test_activation_op.py 93.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20 21

from op_test import OpTest
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
53

54
        np.random.seed(2049)
55 56 57 58 59
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
60 61 62 63 64

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
65 66
        if self.dtype == np.float16:
            return
67
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
68

69
    def init_dtype(self):
70
        self.dtype = np.float64
71

72 73 74
    def init_kernel_type(self):
        pass

Q
qijun 已提交
75

76 77 78
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
79
            np_x = np.array([0.1])
80
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
81
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
82 83
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
84 85 86
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
87 88 89 90 91 92 93

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
94 95 96 97 98
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
99 100


C
chengduo 已提交
101
class TestSigmoid(TestActivation):
Q
qijun 已提交
102 103
    def setUp(self):
        self.op_type = "sigmoid"
104 105
        self.init_dtype()

106
        np.random.seed(1024)
107 108 109 110 111
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
112

113 114 115
    def init_dtype(self):
        self.dtype = np.float32

116
    def test_check_grad(self):
117 118 119 120
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

121

M
minghaoBD 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
188
class TestLogSigmoid(TestActivation):
189 190
    def setUp(self):
        self.op_type = "logsigmoid"
191 192
        self.init_dtype()

193
        np.random.seed(2048)
194 195 196
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

197
        self.inputs = {'X': x}
198
        self.outputs = {'Out': out}
199 200

    def test_check_grad(self):
201 202
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
203
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
204 205


206
class TestLogSigmoidAPI(unittest.TestCase):
207
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
208
    def setUp(self):
209
        np.random.seed(1024)
210
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
211
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
212 213 214
            else paddle.CPUPlace()

    def test_static_api(self):
215
        paddle.enable_static()
216
        with paddle.static.program_guard(paddle.static.Program()):
217
            x = paddle.fluid.data('X', [11, 17])
218
            out1 = F.log_sigmoid(x)
219 220 221 222 223 224
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
225
            self.assertTrue(np.allclose(out_ref, r))
226 227 228 229

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
230
        out1 = F.log_sigmoid(x)
231 232 233 234
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
235
            self.assertTrue(np.allclose(out_ref, r.numpy()))
236 237
        paddle.enable_static()

238
    def test_fluid_api(self):
239
        paddle.enable_static()
240
        with paddle.static.program_guard(paddle.static.Program()):
241
            x = paddle.fluid.data('X', [11, 17])
242 243 244 245 246 247
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

248
    def test_errors(self):
249
        paddle.enable_static()
250 251
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
252
            self.assertRaises(TypeError, F.log_sigmoid, 1)
253
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
254 255
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
256
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
257
            # support the input dtype is float16
J
joejiong 已提交
258 259
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
260
            F.log_sigmoid(x_fp16)
261 262


263
class TestTanh(TestActivation, TestParameter):
264 265
    def setUp(self):
        self.op_type = "tanh"
266
        self.init_dtype()
267
        np.random.seed(1024)
268 269 270 271 272
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
273 274

    def test_check_grad(self):
275 276
        if self.dtype == np.float16:
            return
277
        self.check_grad(['X'], 'Out')
278

279 280 281 282 283 284
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

285

W
WangXi 已提交
286 287 288 289
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
290
        np.random.seed(1024)
W
WangXi 已提交
291
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
292
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
293
            else paddle.CPUPlace()
294 295 296 297
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
298 299

    def test_static_api(self):
300
        paddle.enable_static()
W
WangXi 已提交
301
        with paddle.static.program_guard(paddle.static.Program()):
302
            x = paddle.fluid.data('X', [10, 12], self.dtype)
303
            out1 = self.tanh(x)
W
WangXi 已提交
304 305 306 307 308 309 310 311 312 313
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
314
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
315 316 317 318 319 320 321 322 323 324
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
325
        paddle.enable_static()
W
WangXi 已提交
326 327 328 329 330 331 332 333 334
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
335
        paddle.enable_static()
W
WangXi 已提交
336 337
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
338
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
339
            # The input dtype must be float16, float32.
J
joejiong 已提交
340 341
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
342
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
343
            # support the input dtype is float16
J
joejiong 已提交
344 345
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
346 347 348 349 350 351 352
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
353 354


355
class TestAtan(TestActivation, TestParameter):
356 357 358 359
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

360
        np.random.seed(1024)
361 362 363 364 365 366 367 368 369
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
370
        self.check_grad(['X'], 'Out')
371

W
WuHaobo 已提交
372 373 374 375 376 377 378 379 380 381 382
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

383 384 385 386 387 388 389 390
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

391

392 393 394 395 396
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

397
        np.random.seed(1024)
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

469
        np.random.seed(1024)
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


536 537 538 539 540 541
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
542 543
    def setUp(self):
        self.op_type = "tanh_shrink"
544 545
        self.init_dtype()

546
        np.random.seed(1024)
547 548
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
549

550
        self.inputs = {'X': x}
551
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
552 553

    def test_check_grad(self):
554 555
        if self.dtype == np.float16:
            return
556
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
557

558

559 560 561
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
562
        np.random.seed(1024)
563
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
564
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
565 566 567
            else paddle.CPUPlace()

    def test_static_api(self):
568
        paddle.enable_static()
569
        with paddle.static.program_guard(paddle.static.Program()):
570
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
592
        paddle.enable_static()
593 594 595 596 597 598 599 600 601
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
602
        paddle.enable_static()
603 604 605 606
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
607 608
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
609 610
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
611 612
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
613 614 615
            F.tanhshrink(x_fp16)


616 617 618 619 620 621
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
622
class TestHardShrink(TestActivation):
623 624
    def setUp(self):
        self.op_type = "hard_shrink"
625 626
        self.init_dtype()

627 628
        self.threshold = 0.5
        self.set_attrs()
629
        np.random.seed(1024)
Z
zhupengyang 已提交
630
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
631
        out = ref_hardshrink(x, self.threshold)
632

633
        self.attrs = {'threshold': self.threshold}
634
        self.inputs = {'X': x}
635
        self.outputs = {'Out': out}
636

637 638 639
    def set_attrs(self):
        pass

640
    def test_check_grad(self):
641 642
        if self.dtype == np.float16:
            return
643
        self.check_grad(['X'], 'Out')
644 645


646 647 648 649 650
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


651 652 653
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
654
        np.random.seed(1024)
655
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
656
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
657 658 659
            else paddle.CPUPlace()

    def test_static_api(self):
660
        paddle.enable_static()
661
        with paddle.static.program_guard(paddle.static.Program()):
662
            x = paddle.fluid.data('X', [10, 12])
663 664 665 666 667 668 669 670 671 672 673
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
674
        x = paddle.to_tensor(self.x_np)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
691
        paddle.enable_static()
692 693 694 695 696 697 698 699
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

700
    def test_errors(self):
701
        paddle.enable_static()
702
        with paddle.static.program_guard(paddle.static.Program()):
703
            # The input type must be Variable.
704
            self.assertRaises(TypeError, F.hardshrink, 1)
705
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
706 707
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
708
            self.assertRaises(TypeError, F.hardshrink, x_int32)
709
            # support the input dtype is float16
J
joejiong 已提交
710 711
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
712
            F.hardshrink(x_fp16)
713 714


715 716 717 718 719 720 721 722 723 724 725
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
726
        np.random.seed(1024)
727
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
728
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
729 730 731
            else paddle.CPUPlace()

    def test_static_api(self):
732
        paddle.enable_static()
733
        with paddle.static.program_guard(paddle.static.Program()):
734
            x = paddle.fluid.data('X', [10, 12])
735 736 737 738 739 740 741 742 743 744 745
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
746
        x = paddle.to_tensor(self.x_np)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
763
        paddle.enable_static()
764 765 766 767
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
768 769
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
770 771
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
772 773
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
774 775 776
            F.hardtanh(x_fp16)


777 778 779 780 781 782 783 784
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
785 786
    def setUp(self):
        self.op_type = "softshrink"
787 788
        self.init_dtype()

789
        threshold = 0.8
790

791
        np.random.seed(1023)
792 793 794 795
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
796
        self.outputs = {'Out': out}
797 798

    def test_check_grad(self):
799 800
        if self.dtype == np.float16:
            return
801
        self.check_grad(['X'], 'Out')
802

803

804 805 806 807
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
808
        np.random.seed(1024)
809
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
810
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
811 812 813
            else paddle.CPUPlace()

    def test_static_api(self):
814
        paddle.enable_static()
815
        with paddle.static.program_guard(paddle.static.Program()):
816
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
838
        paddle.enable_static()
839 840 841 842 843 844 845 846
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

847
    def test_errors(self):
848
        paddle.enable_static()
849
        with paddle.static.program_guard(paddle.static.Program()):
850
            # The input type must be Variable.
851
            self.assertRaises(TypeError, F.softshrink, 1)
852
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
853 854
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
855
            self.assertRaises(TypeError, F.softshrink, x_int32)
856
            # The threshold must be no less than zero
J
joejiong 已提交
857 858
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
859
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
860
            # support the input dtype is float16
J
joejiong 已提交
861 862
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
863
            F.softshrink(x_fp16)
864 865


866
class TestSqrt(TestActivation, TestParameter):
867 868
    def setUp(self):
        self.op_type = "sqrt"
869 870
        self.init_dtype()

871
        np.random.seed(1023)
872 873 874 875 876
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
877 878

    def test_check_grad(self):
879 880
        if self.dtype == np.float16:
            return
881
        self.check_grad(['X'], 'Out')
882

883

Z
zhoukunsheng 已提交
884 885 886 887 888
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

889
        np.random.seed(1024)
Z
zhupengyang 已提交
890
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
891 892 893 894 895 896 897 898 899 900 901
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
902
class TestAbs(TestActivation):
903 904
    def setUp(self):
        self.op_type = "abs"
905 906
        self.init_dtype()

907
        np.random.seed(1024)
908
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
909
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
910
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
911
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
912 913
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
914 915 916 917
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
918 919

    def test_check_grad(self):
920 921
        if self.dtype == np.float16:
            return
922
        self.check_grad(['X'], 'Out')
923

924

C
chengduo 已提交
925
class TestCeil(TestActivation):
D
dzhwinter 已提交
926 927
    def setUp(self):
        self.op_type = "ceil"
928 929
        self.init_dtype()

930
        np.random.seed(1024)
Z
zhupengyang 已提交
931
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
932 933 934 935
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
936

D
dzhwinter 已提交
937
    # The same reason with TestFloor
C
chengduo 已提交
938
    def test_check_grad(self):
939 940 941
        pass


C
chengduo 已提交
942
class TestFloor(TestActivation):
D
dzhwinter 已提交
943 944
    def setUp(self):
        self.op_type = "floor"
945 946
        self.init_dtype()

947
        np.random.seed(1024)
Z
zhupengyang 已提交
948
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
949 950 951 952
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
953

D
dzhwinter 已提交
954
    # the gradient on floor, ceil, round is undefined.
955
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
956 957
    # The same reason with TestFloor
    def test_check_grad(self):
958 959 960
        pass


C
chengduo 已提交
961
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
962 963
    def setUp(self):
        self.op_type = "cos"
964 965
        self.init_dtype()

966
        np.random.seed(1024)
Z
zhupengyang 已提交
967
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
968 969 970 971
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
972 973

    def test_check_grad(self):
974 975
        if self.dtype == np.float16:
            return
976
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
977

978

J
joejiong 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1030 1031 1032 1033 1034
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1035
        np.random.seed(1024)
Z
zhupengyang 已提交
1036
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1037 1038 1039 1040 1041 1042 1043 1044
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1045
        self.check_grad(['X'], 'Out')
1046 1047


1048
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1049 1050
    def setUp(self):
        self.op_type = "sin"
1051 1052
        self.init_dtype()

1053
        np.random.seed(1024)
Z
zhupengyang 已提交
1054
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1055 1056 1057 1058
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1059 1060

    def test_check_grad(self):
1061 1062
        if self.dtype == np.float16:
            return
1063
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1064 1065


1066 1067 1068 1069 1070
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1071
        np.random.seed(2048)
Z
zhupengyang 已提交
1072
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1073 1074 1075 1076 1077 1078 1079 1080
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1081
        self.check_grad(['X'], 'Out')
1082 1083


C
chengduo 已提交
1084
class TestRound(TestActivation):
D
dzhwinter 已提交
1085 1086
    def setUp(self):
        self.op_type = "round"
1087 1088
        self.init_dtype()

1089
        np.random.seed(1024)
Z
zhupengyang 已提交
1090
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1091 1092 1093 1094
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1095

C
chengduo 已提交
1096
    def test_check_grad(self):
1097 1098 1099
        pass


C
chengduo 已提交
1100
class TestRelu(TestActivation):
1101
    def setUp(self):
Q
qijun 已提交
1102
        self.op_type = "relu"
K
Kexin Zhao 已提交
1103 1104
        self.init_dtype()

1105
        np.random.seed(1024)
K
Kexin Zhao 已提交
1106
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
1107 1108
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
1109 1110
        out = np.maximum(x, 0)

1111
        self.inputs = {'X': x}
K
Kexin Zhao 已提交
1112
        self.outputs = {'Out': out}
1113 1114

    def test_check_grad(self):
K
Kexin Zhao 已提交
1115 1116
        if self.dtype == np.float16:
            return
1117
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1118 1119


1120 1121 1122
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1123
        np.random.seed(1024)
1124
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1125
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1126
            else paddle.CPUPlace()
1127 1128 1129 1130
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1131 1132

    def test_static_api(self):
1133
        paddle.enable_static()
1134
        with paddle.static.program_guard(paddle.static.Program()):
1135
            x = paddle.fluid.data('X', [10, 12])
1136
            out1 = self.relu(x)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1149 1150
        out1 = m(x)
        out2 = self.relu(x)
1151 1152 1153 1154 1155
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1156
    def test_errors(self):
1157
        paddle.enable_static()
1158
        with paddle.static.program_guard(paddle.static.Program()):
1159
            # The input type must be Variable.
1160
            self.assertRaises(TypeError, self.relu, 1)
1161
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1162 1163
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1164
            self.assertRaises(TypeError, self.relu, x_int32)
1165
            # support the input dtype is float16
J
joejiong 已提交
1166 1167
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1168 1169 1170 1171 1172 1173 1174
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1175 1176


1177 1178 1179 1180 1181 1182
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1183
class TestLeakyRelu(TestActivation):
1184 1185 1186
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1187 1188 1189
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1190
        alpha = self.get_alpha()
A
Adam 已提交
1191

1192
        np.random.seed(1024)
A
Adam 已提交
1193 1194
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1195 1196
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1197

1198
        self.inputs = {'X': x}
A
Adam 已提交
1199
        self.outputs = {'Out': out}
1200
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1201 1202 1203 1204

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1205
        self.check_grad(['X'], 'Out')
1206 1207


1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1227
        np.random.seed(1024)
1228
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1229
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1230 1231 1232
            else paddle.CPUPlace()

    def test_static_api(self):
1233
        paddle.enable_static()
1234
        with paddle.static.program_guard(paddle.static.Program()):
1235
            x = paddle.fluid.data('X', [10, 12])
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1247
        x = paddle.to_tensor(self.x_np)
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1264
        paddle.enable_static()
1265 1266 1267 1268 1269 1270 1271 1272
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1273
    def test_errors(self):
1274
        paddle.enable_static()
1275
        with paddle.static.program_guard(paddle.static.Program()):
1276
            # The input type must be Variable.
1277
            self.assertRaises(TypeError, F.leaky_relu, 1)
1278
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1279 1280
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1281 1282
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1283 1284
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1285
            F.leaky_relu(x_fp16)
1286 1287


1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1298 1299 1300
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1301
        approximate = True
1302
        np.random.seed(1024)
1303 1304
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1305

1306
        self.inputs = {'X': x}
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1321
        np.random.seed(2048)
C
Clementine 已提交
1322
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1323
        out = gelu(x, approximate)
C
Clementine 已提交
1324

1325
        self.inputs = {'X': x}
C
Clementine 已提交
1326
        self.outputs = {'Out': out}
1327
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1328 1329 1330 1331

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1332
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1333 1334


1335 1336 1337
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1338
        np.random.seed(1024)
1339
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1340
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1341 1342 1343
            else paddle.CPUPlace()

    def test_static_api(self):
1344
        paddle.enable_static()
1345
        with paddle.static.program_guard(paddle.static.Program()):
1346
            x = paddle.fluid.data('X', [11, 17])
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1375
        paddle.enable_static()
1376 1377 1378 1379
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1380 1381
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1382 1383
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1384 1385
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1386 1387 1388
            F.gelu(x_fp16)


C
chengduo 已提交
1389
class TestBRelu(TestActivation):
1390 1391
    def setUp(self):
        self.op_type = "brelu"
1392 1393
        self.init_dtype()

1394
        np.random.seed(1024)
Z
zhupengyang 已提交
1395
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1396 1397
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1398 1399
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1400
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1401 1402 1403
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1404 1405 1406

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1407
        self.outputs = {'Out': t}
1408 1409

    def test_check_grad(self):
1410 1411
        if self.dtype == np.float16:
            return
1412
        self.check_grad(['X'], 'Out')
1413

1414

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1426
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1456 1457 1458 1459 1460 1461 1462
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1463
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1464
    def setUp(self):
1465
        self.op_type = "relu6"
1466 1467
        self.init_dtype()

1468
        np.random.seed(1024)
Z
zhupengyang 已提交
1469
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1470
        x[np.abs(x) < 0.005] = 0.02
1471
        out = ref_relu6(x)
1472

1473 1474
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1475
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1476

1477 1478 1479
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1480
        self.check_grad(['X'], 'Out')
1481 1482


1483 1484 1485
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1486
        np.random.seed(1024)
1487 1488
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1489
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1490 1491 1492
            else paddle.CPUPlace()

    def test_static_api(self):
1493
        paddle.enable_static()
1494
        with paddle.static.program_guard(paddle.static.Program()):
1495
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1517
        paddle.enable_static()
1518 1519 1520 1521 1522 1523 1524 1525
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1526
    def test_errors(self):
1527
        paddle.enable_static()
1528
        with paddle.static.program_guard(paddle.static.Program()):
1529
            # The input type must be Variable.
1530
            self.assertRaises(TypeError, F.relu6, 1)
1531
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1532 1533
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1534
            self.assertRaises(TypeError, F.relu6, x_int32)
1535
            # support the input dtype is float16
J
joejiong 已提交
1536 1537
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1538
            F.relu6(x_fp16)
1539 1540


1541 1542 1543 1544 1545
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1546 1547 1548 1549 1550
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

J
jakpiase 已提交
1551 1552 1553
        from op_test import skip_check_grad_ci
        skip_check_grad_ci(reason="not implemented yet")

1554
        np.random.seed(1024)
Z
zhupengyang 已提交
1555
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1556 1557 1558 1559 1560 1561
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1562
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1563

1564
        self.inputs = {'X': x}
H
huangjun12 已提交
1565 1566 1567 1568 1569 1570
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1571 1572

        return  # not implemented yet
1573
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1574 1575


1576 1577 1578 1579
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1580
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1581 1582 1583 1584
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1585
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1604
        paddle.enable_static()
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1623
            # The input type must be Variable.
1624
            self.assertRaises(TypeError, F.hardswish, 1)
1625
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1626 1627
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1628
            self.assertRaises(TypeError, F.hardswish, x_int32)
1629
            # support the input dtype is float16
J
joejiong 已提交
1630 1631
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1632
            F.hardswish(x_fp16)
1633 1634


C
chengduo 已提交
1635
class TestSoftRelu(TestActivation):
1636 1637
    def setUp(self):
        self.op_type = "soft_relu"
1638 1639
        self.init_dtype()

1640
        np.random.seed(4096)
1641
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1642
        threshold = 2.0
Q
qijun 已提交
1643 1644
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1645
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1646 1647 1648
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1649 1650 1651 1652 1653
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1654 1655

    def test_check_grad(self):
1656 1657
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1658
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1659

1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1674 1675 1676 1677 1678
def elu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1679
class TestELU(TestActivation):
1680 1681
    def setUp(self):
        self.op_type = "elu"
1682 1683
        self.init_dtype()

1684
        np.random.seed(1024)
Z
zhupengyang 已提交
1685
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
1686
        alpha = 1.
1687
        out = elu(x, alpha)
1688 1689 1690 1691
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1692
        self.outputs = {'Out': out}
1693 1694

    def test_check_grad(self):
1695 1696
        if self.dtype == np.float16:
            return
1697
        self.check_grad(['X'], 'Out')
1698 1699


1700 1701 1702
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1703
        np.random.seed(1024)
1704
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1705
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1706
            else paddle.CPUPlace()
1707 1708 1709 1710
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1711 1712

    def test_static_api(self):
1713
        paddle.enable_static()
1714
        with paddle.static.program_guard(paddle.static.Program()):
1715
            x = paddle.fluid.data('X', [10, 12])
1716
            out1 = self.elu(x)
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1728 1729
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1730 1731 1732 1733 1734 1735
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1736 1737
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1738 1739 1740 1741 1742 1743 1744
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1745
    def test_errors(self):
1746
        paddle.enable_static()
1747 1748
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1749
            self.assertRaises(TypeError, self.elu, 1)
1750
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1751 1752
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1753
            self.assertRaises(TypeError, self.elu, x_int32)
1754
            # support the input dtype is float16
J
joejiong 已提交
1755 1756
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1757 1758 1759 1760 1761 1762 1763
            self.elu(x_fp16)


class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_
1764 1765


C
chengduo 已提交
1766
class TestReciprocal(TestActivation):
Q
qijun 已提交
1767 1768
    def setUp(self):
        self.op_type = "reciprocal"
1769 1770
        self.init_dtype()

1771
        np.random.seed(1024)
1772 1773 1774 1775 1776
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1777 1778

    def test_check_grad(self):
1779 1780
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1781
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
1782 1783


C
chengduo 已提交
1784
class TestLog(TestActivation):
Q
qijun 已提交
1785 1786
    def setUp(self):
        self.op_type = "log"
1787 1788
        self.init_dtype()

1789
        np.random.seed(1024)
1790 1791 1792 1793 1794
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1795 1796

    def test_check_grad(self):
1797 1798
        if self.dtype == np.float16:
            return
1799
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

1810

J
joejiong 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


1909 1910 1911 1912 1913
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

1914
        np.random.seed(1024)
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1938 1939 1940
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1941
        expected_res = np.log1p(input_x)
1942
        self.assertTrue(np.allclose(res1, expected_res))
1943 1944 1945 1946 1947 1948 1949 1950

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1951
        self.assertTrue(np.allclose(np_z, z_expected))
1952 1953


C
chengduo 已提交
1954
class TestSquare(TestActivation):
Q
qijun 已提交
1955 1956
    def setUp(self):
        self.op_type = "square"
1957 1958
        self.init_dtype()

1959
        np.random.seed(1024)
1960 1961 1962 1963 1964
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1965 1966

    def test_check_grad(self):
1967 1968
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1969
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1970

1971

C
chengduo 已提交
1972
class TestPow(TestActivation):
1973 1974
    def setUp(self):
        self.op_type = "pow"
1975 1976
        self.init_dtype()

1977
        np.random.seed(1024)
1978 1979 1980 1981
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1982
        self.attrs = {'factor': 3.0}
1983
        self.outputs = {'Out': out}
1984 1985

    def test_check_grad(self):
1986 1987
        if self.dtype == np.float16:
            return
1988
        self.check_grad(['X'], 'Out')
1989

1990

1991 1992 1993 1994 1995
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

1996
        np.random.seed(1024)
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2014
        self.check_grad(['X'], 'Out')
2015 2016 2017 2018 2019

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2020 2021 2022 2023 2024
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2025 2026 2027 2028 2029

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2030 2031 2032
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2033 2034

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2035
        res_1, res_2, res, res_6 = exe.run(
2036 2037
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2038
            fetch_list=[out_1, out_2, res, out_6])
2039

2040 2041 2042
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2067

2068 2069 2070 2071 2072
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2073
class TestSTanh(TestActivation):
2074 2075 2076 2077 2078 2079
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2080 2081
    def setUp(self):
        self.op_type = "stanh"
2082
        self.init_dtype()
2083 2084
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2085

2086
        np.random.seed(1024)
2087
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2088 2089
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2090

2091
        self.inputs = {'X': x}
2092
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2093
        self.outputs = {'Out': out}
2094

Q
qijun 已提交
2095
    def test_check_grad(self):
2096 2097
        if self.dtype == np.float16:
            return
2098
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2099

2100

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2157
    def test_errors(self):
2158 2159
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2160
            # The input type must be Variable.
2161
            self.assertRaises(TypeError, paddle.stanh, 1)
2162
            # The input dtype must be float16, float32, float64.
2163 2164 2165
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2166
            # support the input dtype is float16
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2180 2181


2182 2183 2184 2185 2186 2187 2188
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2189
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2190 2191
    def setUp(self):
        self.op_type = "softplus"
2192 2193
        self.init_dtype()

2194 2195
        beta = 2
        threshold = 15
2196

2197
        np.random.seed(1024)
2198 2199 2200 2201
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2202
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2203 2204

    def test_check_grad(self):
2205 2206
        if self.dtype == np.float16:
            return
2207
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2208

2209

2210 2211 2212 2213 2214
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2215
        np.random.seed(1024)
2216
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2217
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2218 2219 2220
            else paddle.CPUPlace()

    def test_static_api(self):
2221
        paddle.enable_static()
2222
        with paddle.static.program_guard(paddle.static.Program()):
2223
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2245
        paddle.enable_static()
2246 2247 2248 2249 2250 2251 2252 2253 2254
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2255
        paddle.enable_static()
2256 2257 2258 2259
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2260 2261
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2262 2263
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2264 2265
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2266 2267 2268 2269 2270 2271 2272 2273
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2274
class TestSoftsign(TestActivation):
2275 2276
    def setUp(self):
        self.op_type = "softsign"
2277 2278
        self.init_dtype()

2279
        np.random.seed(1024)
2280 2281 2282
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2283
        self.outputs = {'Out': out}
2284 2285

    def test_check_grad(self):
2286 2287
        if self.dtype == np.float16:
            return
2288
        self.check_grad(['X'], 'Out')
2289 2290


2291 2292 2293
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2294
        np.random.seed(1024)
2295
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2296
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2297 2298 2299
            else paddle.CPUPlace()

    def test_static_api(self):
2300
        paddle.enable_static()
2301
        with paddle.static.program_guard(paddle.static.Program()):
2302
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2324
        paddle.enable_static()
2325 2326 2327 2328 2329 2330 2331 2332 2333
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2334
        paddle.enable_static()
2335 2336 2337 2338
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2339 2340
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2341 2342
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2343 2344
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2345 2346 2347
            F.softsign(x_fp16)


2348 2349 2350 2351 2352
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2353
class TestThresholdedRelu(TestActivation):
2354 2355
    def setUp(self):
        self.op_type = "thresholded_relu"
2356 2357
        self.init_dtype()

2358
        threshold = 15
2359

2360 2361 2362 2363 2364 2365
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2366
        self.outputs = {'Out': out}
2367 2368

    def test_check_grad(self):
2369 2370
        if self.dtype == np.float16:
            return
2371
        self.check_grad(['X'], 'Out')
2372 2373


2374 2375 2376 2377 2378 2379 2380
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2381
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2382 2383 2384 2385 2386
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2387
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2418
    def test_errors(self):
2419 2420
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2421
            # The input type must be Variable.
2422
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2423
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2424 2425
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2426
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2427
            # support the input dtype is float16
J
joejiong 已提交
2428 2429
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2430
            F.thresholded_relu(x_fp16)
2431 2432


2433 2434 2435 2436
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2437
class TestHardSigmoid(TestActivation):
2438 2439
    def setUp(self):
        self.op_type = "hard_sigmoid"
2440 2441 2442 2443
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2444

2445 2446 2447
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2448

2449
        # Same reason as TestAbs
2450 2451 2452
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2453

2454
        out = ref_hardsigmoid(x, self.slope, self.offset)
2455

2456 2457
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2458
        self.outputs = {'Out': out}
2459

2460 2461
    def set_attrs(self):
        pass
2462

2463

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2479
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2480 2481 2482 2483
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2484
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2503
        paddle.enable_static()
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2522
            # The input type must be Variable.
2523
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2524
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2525 2526
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2527
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2528
            # support the input dtype is float16
J
joejiong 已提交
2529 2530
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2531
            F.hardsigmoid(x_fp16)
2532 2533


2534 2535 2536 2537 2538
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2539
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2540 2541
    def setUp(self):
        self.op_type = "swish"
2542 2543
        self.init_dtype()

2544
        np.random.seed(1024)
2545 2546 2547
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2548
        self.attrs = {'beta': 1.0}
2549
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2550 2551

    def test_check_grad(self):
2552 2553
        if self.dtype == np.float16:
            return
2554 2555
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2556

2557 2558 2559 2560 2561
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2562
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2563 2564 2565 2566 2567
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2568
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2598

2599
    def test_errors(self):
2600 2601
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2602
            # The input type must be Variable.
2603
            self.assertRaises(TypeError, F.swish, 1)
2604
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2605 2606
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2607
            self.assertRaises(TypeError, F.swish, x_int32)
2608
            # support the input dtype is float16
J
joejiong 已提交
2609 2610
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2611
            F.swish(x_fp16)
2612 2613


2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
2645
create_test_error_class('tan')
2646 2647


2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
2667 2668 2669 2670 2671
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
2672
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
2673 2674 2675 2676
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
2677

C
chengduo 已提交
2678
        def test_check_output(self):
2679
            place = core.CUDAPlace(0)
C
chengduo 已提交
2680 2681 2682
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
2683

C
chengduo 已提交
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
2698
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
2699 2700
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
2701
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
2702
create_test_act_fp16_class(TestHardShrink)
2703
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
2704 2705 2706 2707 2708
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
2709
create_test_act_fp16_class(TestTan, grad_atol=0.85)
2710
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
2711
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
2712
create_test_act_fp16_class(TestSin)
2713
create_test_act_fp16_class(TestSinh)
2714 2715
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
2716 2717
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
2718
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
2719 2720
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
2721
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
2722 2723 2724
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
2725 2726 2727 2728
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
2729
create_test_act_fp16_class(TestLog10, atol=5e-2)
2730
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
2731 2732
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
2733
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
2734 2735 2736 2737 2738
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
2739
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
2740
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
2741

Q
qijun 已提交
2742 2743
if __name__ == "__main__":
    unittest.main()