creation.py 39.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19 20 21
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26 27
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
28
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
29

30
# TODO: define functions to get create a tensor  
31 32
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
33
from ..fluid.layers import linspace  #DEFINE_ALIAS
34
import paddle
35

W
wangchaochaohu 已提交
36
__all__ = [
37
    'to_tensor',
38 39 40 41
    'crop_tensor',
    'diag',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
42
    'linspace',
43 44 45 46
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
47
    'arange',
48
    'eye',
W
wangchaochaohu 已提交
49
    'full',
P
Pei Yang 已提交
50
    'full_like',
51
    'empty',
W
WuHaobo 已提交
52 53
    'triu',
    'tril',
54
    'meshgrid'
W
wangchaochaohu 已提交
55 56 57
]


58 59 60 61 62 63 64 65
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    """
    Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
L
Leo Chen 已提交
66
    and returned. 
67 68 69 70 71 72 73

    The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then 
    ``x.real`` is the real part, and ``x.imag`` is the imaginary part.

    Args:
        data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
74
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
75
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And
76 77
            'complex64' , 'complex128' only for ComplexTensor. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
78 79 80 81 82
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
83
        Tensor: A Tensor or ComplexTensor constructed from ``data`` .
84 85 86 87 88

    Raises:
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
89
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace
90 91 92 93 94 95 96

    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
97
        paddle.disable_static()
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor: generated_tensor_0
        # - place: CUDAPlace(0)   # allocate on global default place CPU:0
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int64_t
        # - data: [1]

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
        # Tensor: generated_tensor_01
        # - place: CPUPlace
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int
        # - data: [1]

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
        # Tensor: generated_tensor_1
        #   - place: CUDAPinnedPlace
        #   - shape: [2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [1.1 2.2]

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
        # Tensor: generated_tensor_2
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [0.1 0.2 0.3 0.4]

135
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), dtype='complex64')
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        # <class 'paddle.ComplexTensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # ComplexTensor[real]: generated_tensor_0.real
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 2 3 4]
        # ComplexTensor[imag]: generated_tensor_0.imag
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 0 2 0]
    """

    if place is None:
        place = _current_expected_place()
    elif not isinstance(place,
                        (core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        elif isinstance(data, paddle.ComplexTensor):
            return data
        else:
            raise TypeError(
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor".
                format(type(data)))
191 192 193 194 195 196 197 198 199 200 201 202
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
        data = data.astype(dtype)
203 204

    if not np.iscomplexobj(data):
205
        if dtype and convert_dtype(dtype) != data.dtype:
206
            data = data.astype(dtype)
207 208 209 210
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
L
Leo Chen 已提交
211
            zero_copy=False,
212 213 214 215 216 217
            stop_gradient=stop_gradient)
    else:
        name = unique_name.generate('generated_tensor')
        real_tensor = paddle.Tensor(
            value=data.real,
            place=place,
L
Leo Chen 已提交
218
            zero_copy=False,
219 220 221 222 223
            name=name + ".real",
            stop_gradient=stop_gradient)
        imag_tensor = paddle.Tensor(
            value=data.imag,
            place=place,
L
Leo Chen 已提交
224
            zero_copy=False,
225 226 227 228 229
            name=name + ".imag",
            stop_gradient=stop_gradient)
        return paddle.ComplexTensor(real_tensor, imag_tensor)


230
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
231
    """
S
swtkiwi 已提交
232

233 234
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
235

P
Pei Yang 已提交
236
    Args:
237 238
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
239
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
240 241
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
242 243
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
244
    Returns:
245
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
246
    
P
Pei Yang 已提交
247 248
    Examples:
        .. code-block:: python
249

P
Pei Yang 已提交
250 251
          import paddle
          import numpy as np
252
          
253
          paddle.disable_static()  # Now we are in imperative mode 
254
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
255
          output = paddle.full_like(input, 2.0)
256 257
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
258 259 260
    """

    if dtype is None:
261
        dtype = x.dtype
262
    else:
263 264 265 266 267
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
268

269
    helper = LayerHelper("full_like", **locals())
270 271 272
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
273 274
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
275
                'full_like/zeros_like/ones_like')
276
    out = helper.create_variable_for_type_inference(dtype=dtype)
277

P
Pei Yang 已提交
278 279
    helper.append_op(
        type='fill_any_like',
280
        inputs={'X': [x]},
281
        attrs={'value': fill_value,
282
               "dtype": dtype},
P
Pei Yang 已提交
283
        outputs={'Out': [out]})
284
    out.stop_gradient = True
P
Pei Yang 已提交
285 286 287
    return out


288
def ones(shape, dtype=None, name=None):
289
    """
S
swtkiwi 已提交
290

291 292 293
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
294
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
295
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
296 297 298
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
299
    Returns:
300
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
301 302 303 304

    Examples:
        .. code-block:: python

305
          import paddle 
306
          paddle.disable_static()
307
          
308
          # default dtype for ones OP
309 310 311 312 313 314 315 316 317
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
318
          # shape is a Tensor
319 320 321 322
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
323
    """
324 325 326
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
327 328


329
def ones_like(x, dtype=None, name=None):
330
    """
331
	:alias_main: paddle.ones_like
332
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
333

334 335
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
336 337

    Args:
338 339 340 341 342 343 344 345 346 347
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

348
    Returns:
349 350 351 352 353 354
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
355 356 357 358

    Examples:
        .. code-block:: python

359
            import paddle
360

361
            paddle.disable_static()
362

363
            x = paddle.to_tensor([1,2,3])
364 365
            out1 = paddle.zeros_like(x) # [1., 1., 1.]
            out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
366

367 368
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
369 370


371
def zeros(shape, dtype=None, name=None):
372 373 374 375
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
376
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
377
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
378 379 380
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
381 382

    Returns:
383
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
384 385 386 387 388

    Examples:
        .. code-block:: python

          import paddle
389
          
390
          paddle.disable_static()  # Now we are in imperative mode
391 392 393 394 395 396 397 398 399 400
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
401
          data3 = paddle.zeros(shape=shape, dtype='int32') 
402 403
          # [[0 0]
          #  [0 0]]
404
    """
405 406 407
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
408 409


410
def zeros_like(x, dtype=None, name=None):
411
    """
412
	:alias_main: paddle.zeros_like
413
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
414

415 416
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
417 418

    Args:
419 420 421 422 423 424
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
425 426 427
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
428 429

    Returns:
430 431
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
432

433
    Raise:
434 435
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
436

437 438 439
    Examples:
        .. code-block:: python

440
            import paddle
441

442
            paddle.disable_static()
443

444
            x = paddle.to_tensor([1,2,3])
445 446
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
447

448 449
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
450 451


452
def eye(num_rows, num_columns=None, dtype=None, name=None):
453
    """
454
    
455
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
456

457
    Args:
458 459
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
460
            If None, default: num_rows.
W
wangchaochaohu 已提交
461
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
462 463
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
464 465
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
466

467
    Returns:
468
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
469

470 471
    Examples:
        .. code-block:: python
472
          
473
          import paddle
474

475
          paddle.disable_static()  # Now we are in imperative mode
476
          data = paddle.eye(3, dtype='int32')
477 478 479
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
480
          data = paddle.eye(2, 3, dtype='int32')
481 482
          # [[1 0 0]
          #  [0 1 0]]
483 484
    """

485 486 487
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
488
        num_columns = num_rows
489 490 491 492 493
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
494 495


496
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
497
    """
S
swtkiwi 已提交
498

499
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
500 501
    
    Args:
502
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
503 504
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
505 506 507
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
508
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
509
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
510
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
511 512 513
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
514
    Returns:
515
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
516

W
wangchaochaohu 已提交
517 518 519
    Examples:
        .. code-block:: python

520
          import paddle
W
wangchaochaohu 已提交
521

522
          paddle.disable_static()  # Now we are in imperative mode
523 524 525
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
526

527
          # attr shape is a list which contains Tensor.
528
          positive_2 = paddle.fill_constant([1], "int32", 2)
529 530
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
531

532
          # attr shape is a Tensor.
533 534 535 536
          shape = paddle.fill_constant([2], "int32", 2)
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
537
          
538
          # attr fill_value is a Tensor.
539 540 541 542
          val = paddle.fill_constant([1], "float32", 2.0)
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
543 544 545 546 547
    """

    if dtype is None:
        dtype = 'float32'

548
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
549 550


551
def arange(start=0, end=None, step=1, dtype=None, name=None):
552
    """
553
	:alias_main: paddle.arange
554
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
555

556
    This OP returns a 1-D Tensor with spaced values within a given interval.
557

558 559
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
560

561 562
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
563 564

    Parameters:
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
583

584 585 586 587
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
588

589
    Raises:
590
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
591

592 593 594 595
    examples:

        .. code-block:: python

596
        import paddle
597

598
        paddle.disable_static()
599

600 601
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
602

603 604
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
605

606 607 608
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
609

610
        start_var = paddle.to_tensor([3])
611 612 613 614 615 616 617 618 619
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
620

621
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
622 623 624 625 626 627


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
628
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
629 630 631 632 633

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
634
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
658
def tril(x, diagonal=0, name=None):
W
WuHaobo 已提交
659
    """
660 661
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
662

W
WuHaobo 已提交
663
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
664
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
665 666 667 668
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
669
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
670 671 672 673 674 675 676 677 678 679 680 681
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
682 683
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
684 685 686

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
687
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
688 689 690 691 692

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
693
            import paddle
W
WuHaobo 已提交
694 695 696 697 698 699

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

700
            paddle.disable_static()
Y
yaoxuefeng 已提交
701

702
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
703 704
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
705 706 707 708 709
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
710
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
711 712 713 714 715
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
716
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
717 718 719 720
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

721 722 723
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
724
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
725 726 727 728

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
729
def triu(x, diagonal=0, name=None):
W
WuHaobo 已提交
730
    """
731 732
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
733

W
WuHaobo 已提交
734
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
735
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
736 737 738 739
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
740
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
741 742 743 744 745 746 747 748 749 750 751 752
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
753 754
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
755 756 757

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
758
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
759 760 761 762 763

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
764
            import paddle
W
WuHaobo 已提交
765 766 767 768 769

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
770

771
            paddle.disable_static()
W
WuHaobo 已提交
772 773

            # example 1, default diagonal
774
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
775
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
776 777 778 779 780
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
781
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
782 783 784 785 786
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
787
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
788 789 790 791 792
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
793 794
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
795
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
796 797

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
798 799


800
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
801
    """
802 803
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
804

805
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
806 807 808
    vector, and creates N-dimensional grids.
    
    Args:
809
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
810
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
811 812
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
832
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
847
          
848
          paddle.disable_static()
S
suytingwan 已提交
849 850 851

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
852 853
          tensor_3 = paddle.to_tensor(input_3)
          tensor_4 = paddle.to_tensor(input_4)
854
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
855 856 857 858 859 860

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

861 862
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
863
    if in_dygraph_mode():
864 865
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
866 867
        return out

868
    name = kwargs.get("name", None)
S
suytingwan 已提交
869 870
    helper = LayerHelper('meshgrid', **locals())

871 872
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
873

874
    for id, input_ in enumerate(args):
S
suytingwan 已提交
875 876 877 878
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

879
    num = len(args)
S
suytingwan 已提交
880
    out = [
881
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
882 883
        for i in range(num)
    ]
884 885
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
886 887

    return out
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
964 965 966 967 968 969 970
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

971 972 973 974 975 976 977 978 979 980 981 982 983
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()   # Now we are in imperative mode
          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        out = core.ops.empty('shape', shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out