blas_impl.h 63.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
W
Wilber 已提交
15
#include "paddle/pten/backends/cpu/cpu_context.h"
16 17 18
#ifdef PADDLE_WITH_MKLML
#include <mkl.h>
#endif
19

S
ShenLiang 已提交
20
#include <algorithm>
T
tensor-tang 已提交
21
#include <cmath>
T
tensor-tang 已提交
22
#include <limits>
Y
Yu Yang 已提交
23
#include <vector>
24

Y
Yu Yang 已提交
25
#include "paddle/fluid/operators/math/math_function.h"
26
#include "paddle/fluid/platform/bfloat16.h"
27
#include "paddle/fluid/platform/complex.h"
Y
Yu Yang 已提交
28 29 30 31

namespace paddle {
namespace operators {
namespace math {
32 33 34 35 36 37 38 39 40 41 42 43 44
namespace detail {

template <typename T>
static void axpy(int n, const T alpha, const T *x, const int incx, T *y,
                 const int incy) {
  // Y = Y + alpha * X
  while (n-- > 0) {
    *y += alpha * *x;
    y = y + incy;
    x = x + incx;
  }
}
}  // namespace detail
Y
Yu Yang 已提交
45 46 47 48

template <typename T>
struct CBlas;

49 50 51 52
template <>
struct CBlas<int8_t> {
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
53 54
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU, please check your code"));
55 56 57
  }
};

58 59 60 61 62 63 64 65 66
template <>
struct CBlas<int16_t> {
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU, please check your code"));
  }
};

67 68
template <>
struct CBlas<platform::bfloat16> {
69 70 71 72 73
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    detail::axpy(args...);
  }

74 75 76 77 78 79 80 81
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU with bfloat16,"
        " please check your code"));
  }
};

82
#ifdef PADDLE_WITH_MKLML
Y
Yu Yang 已提交
83 84
template <>
struct CBlas<float> {
Y
Yu Yang 已提交
85 86
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
87
    platform::dynload::cblas_sgemm(args...);
Y
Yu Yang 已提交
88
  }
Y
Yu Yang 已提交
89

T
tensor-tang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  template <typename... ARGS>
  static float *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_sgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_sgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_sgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_sgemm_free(args...);
  }

T
tensor-tang 已提交
110 111 112 113 114 115
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_sgemm(args...);
  }
#endif
T
tensor-tang 已提交
116

Y
Yu Yang 已提交
117 118
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
119 120 121 122 123 124 125 126 127 128 129 130 131
    platform::dynload::cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    platform::dynload::cblas_sgemv(args...);
  }

T
tensor-tang 已提交
132 133 134 135 136
  template <typename... ARGS>
  static float DOT(ARGS... args) {
    return platform::dynload::cblas_sdot(args...);
  }

T
tensor-tang 已提交
137 138 139 140 141
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_sscal(args...);
  }

J
Jacek Czaja 已提交
142 143 144 145 146
  template <typename... ARGS>
  static float ASUM(ARGS... args) {
    return platform::dynload::cblas_sasum(args...);
  }

147 148 149
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
    platform::dynload::cblas_sgemm_batch(args...);
Y
Yu Yang 已提交
150 151
  }

152 153
  template <typename... ARGS>
  static void VADD(ARGS... args) {
154 155
    platform::dynload::vsAdd(args...);
  }
T
tensor-tang 已提交
156

157 158 159 160 161
  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vsSub(args...);
  }

T
tensor-tang 已提交
162 163 164 165
  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vsMul(args...);
  }
T
tensor-tang 已提交
166

167 168 169 170 171
  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vsDiv(args...);
  }

T
tensor-tang 已提交
172 173 174 175
  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vsExp(args...);
  }
T
tensor-tang 已提交
176 177

  template <typename... ARGS>
T
tensor-tang 已提交
178
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
179 180 181 182 183 184 185
    platform::dynload::vsSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vsPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
186 187 188 189 190

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vsInv(args...);
  }
Y
Yihua Xu 已提交
191 192 193 194 195

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmsErf(args...);
  }
196
#if !defined(_WIN32)
197 198 199 200
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_scsrmm(args...);
  }
201
#endif
G
Guo Sheng 已提交
202 203 204 205 206

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    platform::dynload::cblas_strsm(args...);
  }
207 208 209 210 211 212 213 214 215
};

template <>
struct CBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    platform::dynload::cblas_dgemm(args...);
  }

T
tensor-tang 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  template <typename... ARGS>
  static double *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_dgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_dgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_dgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_dgemm_free(args...);
  }

T
tensor-tang 已提交
236 237 238 239 240 241
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_dgemm(args...);
  }
#endif
T
tensor-tang 已提交
242

243 244 245
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    platform::dynload::cblas_daxpy(args...);
246 247 248 249
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
250
    platform::dynload::cblas_dcopy(args...);
251 252
  }

Y
Yu Yang 已提交
253 254
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
255
    platform::dynload::cblas_dgemv(args...);
Y
Yu Yang 已提交
256 257
  }

T
tensor-tang 已提交
258 259 260 261 262
  template <typename... ARGS>
  static double DOT(ARGS... args) {
    return platform::dynload::cblas_ddot(args...);
  }

T
tensor-tang 已提交
263 264 265 266 267
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_dscal(args...);
  }

J
Jacek Czaja 已提交
268 269 270 271 272
  template <typename... ARGS>
  static double ASUM(ARGS... args) {
    return platform::dynload::cblas_dasum(args...);
  }

Y
Yu Yang 已提交
273 274
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
275 276 277 278 279 280 281
    platform::dynload::cblas_dgemm_batch(args...);
  }

  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vdAdd(args...);
  }
T
tensor-tang 已提交
282

283 284 285 286 287
  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vdSub(args...);
  }

T
tensor-tang 已提交
288 289 290 291
  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vdMul(args...);
  }
T
tensor-tang 已提交
292

293 294 295 296 297
  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vdDiv(args...);
  }

T
tensor-tang 已提交
298 299 300 301
  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vdExp(args...);
  }
T
tensor-tang 已提交
302 303

  template <typename... ARGS>
T
tensor-tang 已提交
304
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
305 306 307 308 309 310 311
    platform::dynload::vdSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vdPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
312 313 314 315 316

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vdInv(args...);
  }
Y
Yihua Xu 已提交
317 318 319 320 321

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmdErf(args...);
  }
322
#if !defined(_WIN32)
323 324 325 326
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_dcsrmm(args...);
  }
327
#endif
G
Guo Sheng 已提交
328 329 330 331 332

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    platform::dynload::cblas_dtrsm(args...);
  }
333 334
};

335
template <>
336
struct CBlas<platform::complex<float>> {
337
  template <typename... ARGS>
338 339 340
  static void AXPY(int n, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *X, const int incX,
                   paddle::platform::complex<float> *Y, const int incY) {
341 342 343
    platform::dynload::cblas_caxpy(n, &alpha, X, incX, Y, incY);
  }

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_ccopy(args...);
  }

  // the libmklml_intel.so paddle used has no vcAdd, vcSub,
  // vcMul, vcDiv apis before rebuild from source
  // so replace with the raw operator methods
  /*
  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vcAdd(args...);
  }

  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vcSub(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vcMul(args...);
  }

  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vcDiv(args...);
  }
  */

  template <typename... ARGS>
375 376 377
  static void VADD(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
378 379 380 381 382 383
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] + b[i];
    }
  }

  template <typename... ARGS>
384 385 386
  static void VSUB(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
387 388 389 390 391 392
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] - b[i];
    }
  }

  template <typename... ARGS>
393 394 395
  static void VMUL(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
396 397 398 399 400
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] * b[i];
    }
  }
  template <typename... ARGS>
401 402 403
  static void VDIV(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
404 405 406 407 408 409 410
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] / b[i];
    }
  }

  template <typename... ARGS>
  static void GEMV(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans, int M, int N,
411 412 413 414 415
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   const paddle::platform::complex<float> *X, int incx,
                   paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *Y, int incy) {
416 417 418 419 420 421 422 423 424 425
    const void *a_ = (const void *)(A);
    const void *x_ = (const void *)(X);
    void *y_ = static_cast<void *>(Y);
    platform::dynload::cblas_cgemv(layout, trans, M, N, &alpha, a_, lda, x_,
                                   incx, &beta, y_, incy);
  }

  template <typename... ARGS>
  static void GEMM(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans_a,
                   CBLAS_TRANSPOSE trans_b, int M, int N, int K,
426 427 428 429 430
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   const paddle::platform::complex<float> *B, int ldb,
                   paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *C, int ldc) {
431 432 433 434 435 436 437
    const void *a_ = (const void *)(A);
    const void *b_ = (const void *)(B);
    void *c_ = static_cast<void *>(C);
    platform::dynload::cblas_cgemm(layout, trans_a, trans_b, M, N, K, &alpha,
                                   a_, lda, b_, ldb, &beta, c_, ldc);
  }

438 439 440 441 442 443 444 445 446 447 448
  static void TRSM(CBLAS_LAYOUT layout, CBLAS_SIDE side, CBLAS_UPLO uplo,
                   CBLAS_TRANSPOSE trans_a, CBLAS_DIAG diag, int M, int N,
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   paddle::platform::complex<float> *B, int ldb) {
    const void *a_ = (const void *)(A);
    void *b_ = static_cast<void *>(B);
    platform::dynload::cblas_ctrsm(layout, side, uplo, trans_a, diag, M, N,
                                   &alpha, a_, lda, b_, ldb);
  }

449 450 451
  template <typename... ARGS>
  static void GEMM_BATCH(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE *trans_a,
                         CBLAS_TRANSPOSE *trans_b, int *M, int *N, int *K,
452 453 454 455 456 457
                         paddle::platform::complex<float> *alpha,
                         const paddle::platform::complex<float> **A,
                         const int *lda,
                         const paddle::platform::complex<float> **B,
                         const int *ldb, paddle::platform::complex<float> *beta,
                         paddle::platform::complex<float> **C, const int *ldc,
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
                         int group_count, int *group_size) {
    const void **A_void = (const void **)(&(*A));
    const void **B_void = (const void **)(&(*B));
    void **C_void = reinterpret_cast<void **>(C);

    platform::dynload::cblas_cgemm_batch(layout, trans_a, trans_b, M, N, K,
                                         alpha, A_void, lda, B_void, ldb, beta,
                                         C_void, ldc, group_count, group_size);
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    platform::dynload::cblas_cgemm_batch(args...);
  }
};

template <>
475
struct CBlas<platform::complex<double>> {
476
  template <typename... ARGS>
477 478 479
  static void AXPY(int n, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *X, const int incX,
                   paddle::platform::complex<double> *Y, const int incY) {
480 481 482
    platform::dynload::cblas_zaxpy(n, &alpha, X, incX, Y, incY);
  }

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_zcopy(args...);
  }

  // the libmklml_intel.so paddle used has no vzAdd, vzSub,
  // vzMul, vzDiv apis before rebuild from source
  // so replace with the raw operator methods
  /*
  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vzAdd(args...);
  }

  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vzSub(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vzMul(args...);
  }

  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vzDiv(args...);
  }
  */

  template <typename... ARGS>
514 515 516
  static void VADD(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
517 518 519 520 521 522
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] + b[i];
    }
  }

  template <typename... ARGS>
523 524 525
  static void VSUB(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
526 527 528 529 530 531
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] - b[i];
    }
  }

  template <typename... ARGS>
532 533 534
  static void VMUL(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
535 536 537 538 539
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] * b[i];
    }
  }
  template <typename... ARGS>
540 541 542
  static void VDIV(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
543 544 545 546 547 548 549
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] / b[i];
    }
  }

  template <typename... ARGS>
  static void GEMV(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans, int M, int N,
550 551 552 553 554
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   const paddle::platform::complex<double> *X, int incx,
                   paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *Y, int incy) {
555 556 557 558 559 560 561 562 563 564
    const void *a_ = (const void *)(A);
    const void *x_ = (const void *)(X);
    void *y_ = static_cast<void *>(Y);
    platform::dynload::cblas_zgemv(layout, trans, M, N, &alpha, a_, lda, x_,
                                   incx, &beta, y_, incy);
  }

  template <typename... ARGS>
  static void GEMM(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans_a,
                   CBLAS_TRANSPOSE trans_b, int M, int N, int K,
565 566 567 568 569
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   const paddle::platform::complex<double> *B, int ldb,
                   paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *C, int ldc) {
570 571 572 573 574 575 576
    const void *a_ = (const void *)(A);
    const void *b_ = (const void *)(B);
    void *c_ = static_cast<void *>(C);
    platform::dynload::cblas_zgemm(layout, trans_a, trans_b, M, N, K, &alpha,
                                   a_, lda, b_, ldb, &beta, c_, ldc);
  }

577 578 579 580 581 582 583 584 585 586 587
  static void TRSM(CBLAS_LAYOUT layout, CBLAS_SIDE side, CBLAS_UPLO uplo,
                   CBLAS_TRANSPOSE trans_a, CBLAS_DIAG diag, int M, int N,
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   paddle::platform::complex<double> *B, int ldb) {
    const void *a_ = (const void *)(A);
    void *b_ = static_cast<void *>(B);
    platform::dynload::cblas_ztrsm(layout, side, uplo, trans_a, diag, M, N,
                                   &alpha, a_, lda, b_, ldb);
  }

588 589 590
  template <typename... ARGS>
  static void GEMM_BATCH(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE *trans_a,
                         CBLAS_TRANSPOSE *trans_b, int *M, int *N, int *K,
591 592 593 594 595 596 597
                         paddle::platform::complex<double> *alpha,
                         const paddle::platform::complex<double> **A,
                         const int *lda,
                         const paddle::platform::complex<double> **B,
                         const int *ldb,
                         paddle::platform::complex<double> *beta,
                         paddle::platform::complex<double> **C, const int *ldc,
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
                         int group_count, int *group_size) {
    const void **A_void = (const void **)(&(*A));
    const void **B_void = (const void **)(&(*B));
    void **C_void = reinterpret_cast<void **>(C);

    platform::dynload::cblas_zgemm_batch(layout, trans_a, trans_b, M, N, K,
                                         alpha, A_void, lda, B_void, ldb, beta,
                                         C_void, ldc, group_count, group_size);
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    platform::dynload::cblas_zgemm_batch(args...);
  }
};

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
#else

template <>
struct CBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_sgemm(args...);
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_sgemv(args...);
Y
Yu Yang 已提交
636
  }
G
Guo Sheng 已提交
637 638 639 640 641

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    cblas_strsm(args...);
  }
Y
Yu Yang 已提交
642 643 644 645
};

template <>
struct CBlas<double> {
Y
Yu Yang 已提交
646 647 648 649
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_dgemm(args...);
  }
Y
Yu Yang 已提交
650 651 652 653 654 655

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_daxpy(args...);
  }

656 657 658 659 660
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_dcopy(args...);
  }

Y
Yu Yang 已提交
661 662 663 664
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_dgemv(args...);
  }
G
Guo Sheng 已提交
665 666 667 668 669

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    cblas_dtrsm(args...);
  }
Y
Yu Yang 已提交
670
};
671 672

template <>
673
struct CBlas<platform::complex<float>> {
674 675 676 677 678 679
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_ccopy(args...);
  }

  template <typename... ARGS>
680 681 682
  static void AXPY(int n, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *X, const int incX,
                   paddle::platform::complex<float> *Y, const int incY) {
683 684 685 686 687 688
    cblas_caxpy(n, &alpha, X, incX, Y, incY);
  }

  template <typename... ARGS>
  static void GEMV(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const int M, const int N,
689 690 691 692 693
                   const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   const paddle::platform::complex<float> *X, const int incX,
                   const paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *Y, const int incY) {
694 695 696 697 698 699
    cblas_cgemv(layout, TransA, M, N, &alpha, A, lda, X, incX, &beta, Y, incY);
  }

  template <typename... ARGS>
  static void GEMM(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const CBLAS_TRANSPOSE TransB, const int M, const int N,
700 701 702 703 704
                   const int K, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   const paddle::platform::complex<float> *B, const int ldb,
                   const paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *C, const int ldc) {
705 706 707
    cblas_cgemm(layout, TransA, TransB, M, N, K, &alpha, A, lda, B, ldb, &beta,
                C, ldc);
  }
708 709 710 711 712 713 714 715 716

  static void TRSM(const CBLAS_LAYOUT layout, const CBLAS_SIDE side,
                   const CBLAS_UPLO uplo, const CBLAS_TRANSPOSE transA,
                   const CBLAS_DIAG diag, const int M, const int N,
                   const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   paddle::platform::complex<double> *B, const int ldb) {
    cblas_ctrsm(layout, side, uplo, transA, diag, M, N, &alpha, A, lda, B, ldb);
  }
717 718 719
};

template <>
720
struct CBlas<platform::complex<double>> {
721 722 723 724 725 726
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_zcopy(args...);
  }

  template <typename... ARGS>
727 728 729
  static void AXPY(int n, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *X, const int incX,
                   paddle::platform::complex<double> *Y, const int incY) {
730 731 732 733 734 735
    cblas_zaxpy(n, &alpha, X, incX, Y, incY);
  }

  template <typename... ARGS>
  static void GEMV(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const int M, const int N,
736 737 738 739 740
                   const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   const paddle::platform::complex<double> *X, const int incX,
                   const paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *Y, const int incY) {
741 742 743 744 745 746
    cblas_zgemv(layout, TransA, M, N, &alpha, A, lda, X, incX, &beta, Y, incY);
  }

  template <typename... ARGS>
  static void GEMM(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const CBLAS_TRANSPOSE TransB, const int M, const int N,
747 748 749 750 751
                   const int K, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   const paddle::platform::complex<double> *B, const int ldb,
                   const paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *C, const int ldc) {
752 753 754
    cblas_zgemm(layout, TransA, TransB, M, N, K, &alpha, A, lda, B, ldb, &beta,
                C, ldc);
  }
755 756 757 758 759 760 761 762 763

  static void TRSM(const CBLAS_LAYOUT layout, const CBLAS_SIDE side,
                   const CBLAS_UPLO uplo, const CBLAS_TRANSPOSE transA,
                   const CBLAS_DIAG diag, const int M, const int N,
                   const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   paddle::platform::complex<double> *B, const int ldb) {
    cblas_ztrsm(layout, side, uplo, transA, diag, M, N, &alpha, A, lda, B, ldb);
  }
764 765
};

766
#endif
T
tensor-tang 已提交
767

Y
Yu Yang 已提交
768 769
template <>
struct CBlas<platform::float16> {
770 771 772 773 774
  static void GEMM(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 GEMM not supported on CPU, please check your code"));
  }

T
tensor-tang 已提交
775
  static void SMM_GEMM(...) {
776 777
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 SMM_GEMM not supported on CPU, please check your code"));
T
tensor-tang 已提交
778
  }
779 780 781
  static void VMUL(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VMUL not supported on CPU, please check your code"));
T
tensor-tang 已提交
782
  }
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
  static void VEXP(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VEXP not supported on CPU, please check your code"));
  }
  static void VSQUARE(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VSQUARE not supported on CPU, please check your code"));
  }
  static void VPOW(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VPOW not supported on CPU, please check your code"));
  }
  static void DOT(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 DOT not supported on CPU, please check your code"));
  };
  static void SCAL(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 SCAL not supported on CPU, please check your code"));
  };
  static void ASUM(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 ASUM not supported on CPU, please check your code"));
  };
Y
Yu Yang 已提交
807 808
#ifdef PADDLE_WITH_MKLML
  static void GEMM_BATCH(...) {
809 810
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 GEMM_BATCH not supported on CPU, please check your code"));
Y
Yu Yang 已提交
811 812
  }
#endif
Y
Yu Yang 已提交
813
};
T
tensor-tang 已提交
814

T
tensor-tang 已提交
815
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
816 817 818 819 820 821 822
template <>
template <typename T>
T *Blas<platform::CPUDeviceContext>::GEMM_ALLOC(const CBLAS_IDENTIFIER id,
                                                const int M, const int N,
                                                const int K) const {
  return CBlas<T>::GEMM_ALLOC(id, M, N, K);
}
W
Wilber 已提交
823 824 825 826 827 828
template <>
template <typename T>
T *Blas<pten::CPUContext>::GEMM_ALLOC(const CBLAS_IDENTIFIER id, const int M,
                                      const int N, const int K) const {
  return CBlas<T>::GEMM_ALLOC(id, M, N, K);
}
T
tensor-tang 已提交
829 830 831 832 833 834 835 836 837 838

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_PACK(const CBLAS_IDENTIFIER id,
                                                 const CBLAS_TRANSPOSE trans,
                                                 int M, int N, int K,
                                                 const T alpha, const T *src,
                                                 const int ld, T *dst) const {
  CBlas<T>::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst);
}
W
Wilber 已提交
839 840 841 842 843 844 845 846 847
template <>
template <typename T>
void Blas<pten::CPUContext>::GEMM_PACK(const CBLAS_IDENTIFIER id,
                                       const CBLAS_TRANSPOSE trans, int M,
                                       int N, int K, const T alpha,
                                       const T *src, const int ld,
                                       T *dst) const {
  CBlas<T>::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst);
}
T
tensor-tang 已提交
848 849 850 851 852 853 854 855 856

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_COMPUTE(
    int transA, int transB, int M, int N, int K, const T *A, const int lda,
    const T *B, const int ldb, T beta, T *C, const int ldc) const {
  CBlas<T>::GEMM_COMPUTE(CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb,
                         beta, C, ldc);
}
W
Wilber 已提交
857 858 859 860 861 862 863 864 865
template <>
template <typename T>
void Blas<pten::CPUContext>::GEMM_COMPUTE(int transA, int transB, int M, int N,
                                          int K, const T *A, const int lda,
                                          const T *B, const int ldb, T beta,
                                          T *C, const int ldc) const {
  CBlas<T>::GEMM_COMPUTE(CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb,
                         beta, C, ldc);
}
T
tensor-tang 已提交
866 867 868 869 870 871

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_FREE(T *data) const {
  CBlas<T>::GEMM_FREE(data);
}
W
Wilber 已提交
872 873 874 875 876
template <>
template <typename T>
void Blas<pten::CPUContext>::GEMM_FREE(T *data) const {
  CBlas<T>::GEMM_FREE(data);
}
T
tensor-tang 已提交
877
#endif
T
tensor-tang 已提交
878

T
tensor-tang 已提交
879 880 881 882 883 884 885 886 887
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            const T *B, T beta, T *C) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
T
tensor-tang 已提交
888 889
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
890
}
W
Wilber 已提交
891 892 893 894 895 896 897 898 899 900 901 902
template <>
template <typename T>
void Blas<pten::CPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                  CBLAS_TRANSPOSE transB, int M, int N, int K,
                                  T alpha, const T *A, const T *B, T beta,
                                  T *C) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
}
Y
Yu Yang 已提交
903 904 905

template <>
template <typename T>
Y
Yu Yang 已提交
906 907 908 909
void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
T
tensor-tang 已提交
910 911 912 913
  CBlas<T>::GEMM(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
                 transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
                 lda, B, ldb, beta, C, ldc);
}
W
Wilber 已提交
914 915 916 917 918 919 920 921 922
template <>
template <typename T>
void Blas<pten::CPUContext>::GEMM(bool transA, bool transB, int M, int N, int K,
                                  T alpha, const T *A, int lda, const T *B,
                                  int ldb, T beta, T *C, int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
                 transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
                 lda, B, ldb, beta, C, ldc);
}
T
tensor-tang 已提交
923 924 925 926 927 928 929 930 931 932

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
933
}
W
Wilber 已提交
934 935 936 937 938 939 940 941 942
template <>
template <typename T>
void Blas<pten::CPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                  CBLAS_TRANSPOSE transB, int M, int N, int K,
                                  T alpha, const T *A, int lda, const T *B,
                                  int ldb, T beta, T *C, int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
}
Y
Yu Yang 已提交
943

Y
Yu Yang 已提交
944 945 946 947 948 949 950 951 952
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a, bool trans_a,
                                 const framework::Tensor &mat_b, bool trans_b,
                                 T alpha, framework::Tensor *mat_out,
                                 T beta) const {
  auto dim_a = mat_a.dims();
  auto dim_b = mat_b.dims();
  auto dim_out = mat_out->dims();
953 954 955 956 957 958 959 960 961 962 963 964
  PADDLE_ENFORCE_EQ(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, true,
      platform::errors::InvalidArgument(
          "The input and output of matmul should be matrix, the dim size must "
          "be 2,"
          "but received dim size input_a:%d, input_b:%d, output:%d",
          dim_a.size(), dim_b.size(), dim_out.size()));
  PADDLE_ENFORCE_EQ(
      mat_a.place() == mat_b.place() && mat_a.place() == mat_out->place(), true,
      platform::errors::InvalidArgument("The places of matrices in the matmul "
                                        "should be same, please check your "
                                        "code."));
Y
Yu Yang 已提交
965 966 967 968 969 970 971 972 973 974 975 976

  int M = dim_out[0];
  int N = dim_out[1];
  int K = !trans_a ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans;

  this->GEMM(transA, transB, M, N, K, alpha, mat_a.data<T>(), mat_b.data<T>(),
             beta, mat_out->data<T>());
}

Y
Yu Yang 已提交
977 978 979 980 981 982
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::AXPY(int n, T alpha, const T *x,
                                            T *y) const {
  CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}
W
Wilber 已提交
983 984 985 986 987
template <>
template <typename T>
void Blas<pten::CPUContext>::AXPY(int n, T alpha, const T *x, T *y) const {
  CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}
Y
Yu Yang 已提交
988

989 990 991 992 993
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VCOPY(int n, const T *x, T *y) const {
  CBlas<T>::VCOPY(n, x, 1, y, 1);
}
W
Wilber 已提交
994 995 996 997 998
template <>
template <typename T>
void Blas<pten::CPUContext>::VCOPY(int n, const T *x, T *y) const {
  CBlas<T>::VCOPY(n, x, 1, y, 1);
}
999 1000 1001 1002 1003 1004 1005 1006

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VADD(n, x, y, z);
#else
1007
  if (x == z) {
1008
    this->template AXPY<T>(n, (T)(1.), y, z);
1009 1010
  } else {
    this->template VCOPY<T>(n, y, z);
1011
    this->template AXPY<T>(n, (T)(1.), x, z);
1012
  }
1013 1014
#endif
}
W
Wilber 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
template <>
template <typename T>
void Blas<pten::CPUContext>::VADD(int n, const T *x, const T *y, T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VADD(n, x, y, z);
#else
  if (x == z) {
    this->template AXPY<T>(n, (T)(1.), y, z);
  } else {
    this->template VCOPY<T>(n, y, z);
    this->template AXPY<T>(n, (T)(1.), x, z);
  }
#endif
}
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VSUB(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VSUB(n, x, y, z);
#else
  // try to find if openblas support vsub
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
#endif
}
W
Wilber 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
template <>
template <typename T>
void Blas<pten::CPUContext>::VSUB(int n, const T *x, const T *y, T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VSUB(n, x, y, z);
#else
  // try to find if openblas support vsub
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
#endif
}
1055

T
tensor-tang 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMUL(n, x, y, z);
#else
  // try to find if openblas support vmul
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
1066 1067 1068
  }
#endif
}
W
Wilber 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
template <>
template <typename T>
void Blas<pten::CPUContext>::VMUL(int n, const T *x, const T *y, T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMUL(n, x, y, z);
#else
  // try to find if openblas support vmul
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
#endif
}
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VDIV(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VDIV(n, x, y, z);
#else
  // try to find if openblas support vdiv
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] / y[i];
T
tensor-tang 已提交
1092 1093 1094
  }
#endif
}
W
Wilber 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
template <>
template <typename T>
void Blas<pten::CPUContext>::VDIV(int n, const T *x, const T *y, T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VDIV(n, x, y, z);
#else
  // try to find if openblas support vdiv
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] / y[i];
  }
#endif
}
T
tensor-tang 已提交
1107

T
tensor-tang 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VEXP(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VEXP(n, x, y);
#else
  // try to find if openblas support vexp
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
#endif
}
W
Wilber 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
template <>
template <typename T>
void Blas<pten::CPUContext>::VEXP(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VEXP(n, x, y);
#else
  // try to find if openblas support vexp
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
#endif
}
T
tensor-tang 已提交
1132

T
tensor-tang 已提交
1133 1134
template <>
template <typename T>
T
tensor-tang 已提交
1135
void Blas<platform::CPUDeviceContext>::VSQUARE(int n, const T *x, T *y) const {
T
tensor-tang 已提交
1136
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
1137
  CBlas<T>::VSQUARE(n, x, y);
T
tensor-tang 已提交
1138 1139
#else
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
1140
    y[i] = x[i] * x[i];
T
tensor-tang 已提交
1141 1142 1143
  }
#endif
}
W
Wilber 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
template <>
template <typename T>
void Blas<pten::CPUContext>::VSQUARE(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VSQUARE(n, x, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] * x[i];
  }
#endif
}
T
tensor-tang 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VPOW(int n, const T *x, T a,
                                            T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VPOW(n, x, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::pow(x[i], a);
  }
#endif
}
W
Wilber 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
template <>
template <typename T>
void Blas<pten::CPUContext>::VPOW(int n, const T *x, T a, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VPOW(n, x, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::pow(x[i], a);
  }
#endif
}
T
tensor-tang 已提交
1179

T
tensor-tang 已提交
1180 1181 1182 1183
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::DOT(int n, const T *x, const T *y) const {
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
1184
  return CBlas<T>::DOT(n, x, 1, y, 1);
T
tensor-tang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193
#else
  // try to find if openblas support cblas_dot
  T sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i] * y[i];
  }
  return sum;
#endif
}
W
Wilber 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
template <>
template <typename T>
T Blas<pten::CPUContext>::DOT(int n, const T *x, const T *y) const {
#ifdef PADDLE_WITH_MKLML
  return CBlas<T>::DOT(n, x, 1, y, 1);
#else
  // try to find if openblas support cblas_dot
  T sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i] * y[i];
  }
  return sum;
#endif
}
T
tensor-tang 已提交
1208

T
tensor-tang 已提交
1209 1210
template <>
template <typename T>
T
tensor-tang 已提交
1211
void Blas<platform::CPUDeviceContext>::SCAL(int n, const T a, T *x) const {
T
tensor-tang 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::SCAL(n, a, x, 1);
#else
  // try to find if openblas support cblas_scal
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
#endif
}
W
Wilber 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
template <>
template <typename T>
void Blas<pten::CPUContext>::SCAL(int n, const T a, T *x) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::SCAL(n, a, x, 1);
#else
  // try to find if openblas support cblas_scal
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
#endif
}
T
tensor-tang 已提交
1233

J
Jacek Czaja 已提交
1234 1235 1236 1237 1238
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::ASUM(int n, T *x, int inc) const {
  auto sum = static_cast<T>(0.0);
#ifdef PADDLE_WITH_MKLML
1239
  sum = CBlas<T>::ASUM(n, x, inc);
J
Jacek Czaja 已提交
1240
#else
J
Jacek Czaja 已提交
1241
  // TODO(jczaja): check if openblas does provide cblas_sasum/cblas_dasum
J
Jacek Czaja 已提交
1242 1243 1244 1245 1246 1247
  for (int c = 0; c < n; ++c) {
    sum += x[c];
  }
#endif
  return sum;
}
W
Wilber 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
template <>
template <typename T>
T Blas<pten::CPUContext>::ASUM(int n, T *x, int inc) const {
  auto sum = static_cast<T>(0.0);
#ifdef PADDLE_WITH_MKLML
  sum = CBlas<T>::ASUM(n, x, inc);
#else
  // TODO(jczaja): check if openblas does provide cblas_sasum/cblas_dasum
  for (int c = 0; c < n; ++c) {
    sum += x[c];
  }
#endif
  return sum;
}
J
Jacek Czaja 已提交
1262

Y
Yu Yang 已提交
1263 1264 1265 1266 1267 1268 1269 1270
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMV(bool trans_a, int M, int N, T alpha,
                                            const T *A, const T *B, T beta,
                                            T *C) const {
  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}
W
Wilber 已提交
1271 1272 1273 1274 1275 1276 1277
template <>
template <typename T>
void Blas<pten::CPUContext>::GEMV(bool trans_a, int M, int N, T alpha,
                                  const T *A, const T *B, T beta, T *C) const {
  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}
Y
Yu Yang 已提交
1278 1279 1280 1281 1282 1283 1284

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB) const {
1285 1286 1287 1288 1289 1290
  PADDLE_ENFORCE_NOT_NULL(
      A, platform::errors::InvalidArgument("Pointer A should not be null."));
  PADDLE_ENFORCE_NOT_NULL(
      B, platform::errors::InvalidArgument("Pointer B should not be null."));
  PADDLE_ENFORCE_NOT_NULL(
      C, platform::errors::InvalidArgument("Pointer C should not be null."));
Y
Yu Yang 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
#ifdef PADDLE_WITH_MKLML
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }

  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                       a_array.data(), &lda, b_array.data(), &ldb, &beta,
                       c_array.data(), &ldc, 1 /* group_count */, &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
Y
yuyang18 已提交
1309 1310 1311
    auto *Ak = &A[k * strideA];
    auto *Bk = &B[k * strideB];
    auto *Ck = &C[k * M * N];
Y
Yu Yang 已提交
1312 1313 1314 1315
    this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
  }
#endif
}
W
Wilber 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
template <>
template <typename T>
void Blas<pten::CPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                         CBLAS_TRANSPOSE transB, int M, int N,
                                         int K, T alpha, const T *A, const T *B,
                                         T beta, T *C, int batchCount,
                                         int64_t strideA,
                                         int64_t strideB) const {
  PADDLE_ENFORCE_NOT_NULL(
      A, platform::errors::InvalidArgument("Pointer A should not be null."));
  PADDLE_ENFORCE_NOT_NULL(
      B, platform::errors::InvalidArgument("Pointer B should not be null."));
  PADDLE_ENFORCE_NOT_NULL(
      C, platform::errors::InvalidArgument("Pointer C should not be null."));
#ifdef PADDLE_WITH_MKLML
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }

  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                       a_array.data(), &lda, b_array.data(), &ldb, &beta,
                       c_array.data(), &ldc, 1 /* group_count */, &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
    auto *Ak = &A[k * strideA];
    auto *Bk = &B[k * strideB];
    auto *Ck = &C[k * M * N];
    this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
  }
#endif
}
Y
Yu Yang 已提交
1355

S
ShenLiang 已提交
1356 1357 1358 1359 1360 1361
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T **A, const T **B, T beta, T **C, int batchCount) const {
#ifdef PADDLE_WITH_MKLML
W
wanghuancoder 已提交
1362 1363 1364
  const int lda = (std::max)((transA == CblasNoTrans) ? K : M, 1);
  const int ldb = (std::max)((transB == CblasNoTrans) ? N : K, 1);
  const int ldc = (std::max)(N, 1);
S
ShenLiang 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, A,
                       &lda, B, &ldb, &beta, C, &ldc, 1 /* group_count */,
                       &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(transA, transB, M, N, K, alpha, A[k], B[k], beta,
                           C[k]);
  }
#endif
}
W
Wilber 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
template <>
template <typename T>
void Blas<pten::CPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                         CBLAS_TRANSPOSE transB, int M, int N,
                                         int K, T alpha, const T **A,
                                         const T **B, T beta, T **C,
                                         int batchCount) const {
#ifdef PADDLE_WITH_MKLML
  const int lda = (std::max)((transA == CblasNoTrans) ? K : M, 1);
  const int ldb = (std::max)((transB == CblasNoTrans) ? N : K, 1);
  const int ldc = (std::max)(N, 1);
  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, A,
                       &lda, B, &ldb, &beta, C, &ldc, 1 /* group_count */,
                       &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(transA, transB, M, N, K, alpha, A[k], B[k], beta,
                           C[k]);
  }
#endif
}
S
ShenLiang 已提交
1396

1397 1398
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)  // @{ Group Blas MKLML: BatchedGEMMWithHead
1399 1400 1401
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMMWithHead(
1402 1403 1404 1405 1406 1407
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int W1, int H1, int W2,
    int H2, T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB, int64_t head_number,
    bool split_b_vertical) const {
  int lda = (transA == CblasNoTrans) ? W1 : H1;
  int ldb = (transB == CblasNoTrans) ? W2 : H2;
1408 1409 1410 1411
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
  if (split_b_vertical) {
    int ldc = W2;
    int sub_width = W2 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W2 / head_number)
                                : i * (W2 / head_number) * H2;
      int sub_matC_offset = i * W2 / head_number;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &sub_width,
                           &H2, &alpha, a_array.data(), &lda, b_array.data(),
                           &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
1434 1435
    }

1436
  } else {
1437 1438 1439 1440 1441 1442 1443
    PADDLE_ENFORCE_EQ(
        W1, H2,
        platform::errors::InvalidArgument(
            "The fisrt matrix width should be same as second matrix height,"
            "but received fisrt matrix width %d"
            ", second matrix height %d",
            W1, H2));
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
    int ldc = W2 * head_number;
    int sub_width = W1 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W1 / head_number) * W2
                                : i * (W1 / head_number);
      int sub_matC_offset = i * W2;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * head_number * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &W2,
                           &sub_width, &alpha, a_array.data(), &lda,
                           b_array.data(), &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
    }
1466 1467
  }
}
W
Wilber 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
template <>
template <typename T>
void Blas<pten::CPUContext>::BatchedGEMMWithHead(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int W1, int H1, int W2,
    int H2, T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB, int64_t head_number,
    bool split_b_vertical) const {
  int lda = (transA == CblasNoTrans) ? W1 : H1;
  int ldb = (transB == CblasNoTrans) ? W2 : H2;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);

  if (split_b_vertical) {
    int ldc = W2;
    int sub_width = W2 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W2 / head_number)
                                : i * (W2 / head_number) * H2;
      int sub_matC_offset = i * W2 / head_number;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &sub_width,
                           &H2, &alpha, a_array.data(), &lda, b_array.data(),
                           &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
    }

  } else {
    PADDLE_ENFORCE_EQ(
        W1, H2,
        platform::errors::InvalidArgument(
            "The fisrt matrix width should be same as second matrix height,"
            "but received fisrt matrix width %d"
            ", second matrix height %d",
            W1, H2));
    int ldc = W2 * head_number;
    int sub_width = W1 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W1 / head_number) * W2
                                : i * (W1 / head_number);
      int sub_matC_offset = i * W2;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * head_number * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &W2,
                           &sub_width, &alpha, a_array.data(), &lda,
                           b_array.data(), &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
    }
  }
}
1537
#endif  // @} End Group Blas MKLML: BatchedGEMMWithHead
1538

T
tensor-tang 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const int M, const int N, const int K,
                                 const T *A, const T *B, T *C) const {
  this->template GEMM<T>(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                         static_cast<T>(1), A, K, B, N, static_cast<T>(0), C,
                         N);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::MatMul(const int M, const int N,
                                              const int K, const T *A,
                                              const T *B, T *C) const {
#ifdef PADDLE_WITH_LIBXSMM
  // Refer to https://github.com/hfp/libxsmm/blob/master/README.md
  // But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;

  // Since the matrix is very small,
  // so the unit of calculation is already very fast,
  // and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
  // use xsmm directly.
  // Note: SMM use ColMajor
  const char transa = 'N';
  const char transb = 'N';
  const T alpha = static_cast<T>(1);
  const T beta = static_cast<T>(0);
  CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta,
                     C, &N);
  return;
#endif

  CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                 static_cast<T>(1), A, K, B, N, static_cast<T>(0), C, N);
}
W
Wilber 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
template <>
template <typename T>
void Blas<pten::CPUContext>::MatMul(const int M, const int N, const int K,
                                    const T *A, const T *B, T *C) const {
#ifdef PADDLE_WITH_LIBXSMM
  // Refer to https://github.com/hfp/libxsmm/blob/master/README.md
  // But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;

  // Since the matrix is very small,
  // so the unit of calculation is already very fast,
  // and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
  // use xsmm directly.
  // Note: SMM use ColMajor
  const char transa = 'N';
  const char transb = 'N';
  const T alpha = static_cast<T>(1);
  const T beta = static_cast<T>(0);
  CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta,
                     C, &N);
  return;
#endif

  CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                 static_cast<T>(1), A, K, B, N, static_cast<T>(0), C, N);
}
T
tensor-tang 已提交
1599

Y
Yu Yang 已提交
1600 1601 1602 1603 1604 1605 1606
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
                                 const MatDescriptor &dim_a,
                                 const framework::Tensor &mat_b,
                                 const MatDescriptor &dim_b, T alpha,
                                 framework::Tensor *mat_out, T beta) const {
1607 1608 1609 1610 1611 1612 1613 1614 1615
  MatMul(mat_a.data<T>(), dim_a, mat_b.data<T>(), dim_b, alpha,
         mat_out->data<T>(), beta);
}

template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const T *mat_a, const MatDescriptor &dim_a,
                                 const T *mat_b, const MatDescriptor &dim_b,
                                 T alpha, T *mat_out, T beta) const {
1616 1617 1618 1619 1620 1621 1622 1623
  PADDLE_ENFORCE_EQ(
      dim_a.width_, dim_b.height_,
      platform::errors::InvalidArgument(
          "The fisrt matrix width should be same as second matrix height,"
          "but received fisrt matrix width %d"
          ", second matrix height %d",
          dim_a.width_, dim_b.height_));

Y
Yu Yang 已提交
1624 1625 1626 1627
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
1628
                           dim_a.width_, alpha, mat_a, mat_b, beta, mat_out);
Y
Yu Yang 已提交
1629
  } else {
1630 1631 1632 1633 1634 1635 1636 1637
    PADDLE_ENFORCE_EQ(
        dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 ||
            dim_b.batch_size_ == 0,
        true, platform::errors::InvalidArgument(
                  "dim_a.batch_size should be equal to dim_b.batch_size, or "
                  "one of dim_a.batch_size and dim_b.batch_size should be 0. "
                  "But got dim_a.batch_size = %d, dim_b.batch_size = %d.",
                  dim_a.batch_size_, dim_b.batch_size_));
Y
Yu Yang 已提交
1638
    this->template BatchedGEMM<T>(
1639 1640
        transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha, mat_a,
        mat_b, beta, mat_out,
Y
Yu Yang 已提交
1641 1642 1643 1644
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_, dim_b.stride_);
  }
}
1645

1646 1647 1648
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
// @{ Group Blas MKLML: MatMulWithHead
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Multiple two matrixes with multiple heads
 *
 * A new parameter, i.e head_number is added compared to normal MatMul.
 * The head_number describes the number of heads a matrix is vertically
 * split.
 *
 * When user calls this API, the multiplication of two big matrixes is split
 * into multiplication of several (head_number_) small matrixes. e.g. if Mat A
 * is [3, 24] and Mat B is [24, 4], when multiple A and B with head_number as
T
tianshuo78520a 已提交
1659 1660
 * 4, Mat A will be split as 4 matrix of [3, 6] and Mat B will be
 * (horizontally) split as 4 matrix of [6, 4]. The result of final matrix
1661 1662
 * will be 4 matrix of [3, 4], i.e. [3, 16].
 * Another example is A is [3, 8], B is [2, 16], head_number is 4. In this
T
tianshuo78520a 已提交
1663
 * case, A will be split as [3, 2], B will be (vertically) split as
1664
 * [2, 4]. The final result will be 4 matrix of 4 matrix of [3,4], i.e. [3, 16]
1665 1666 1667
 */
template <typename DeviceContext>
template <typename T>
1668 1669 1670 1671 1672 1673 1674
void Blas<DeviceContext>::MatMulWithHead(const framework::Tensor &mat_a,
                                         const MatDescriptor &dim_a,
                                         const framework::Tensor &mat_b,
                                         const MatDescriptor &dim_b, T alpha,
                                         int head_number,
                                         framework::Tensor *mat_out, T beta,
                                         bool mat_b_split_vertical) const {
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
  PADDLE_ENFORCE_EQ(
      dim_a.width_ % head_number, 0,
      platform::errors::InvalidArgument(
          "The first input width must be some times the head number"
          "but received first input width %d"
          ",  head_number %d",
          dim_a.width_, head_number));
  PADDLE_ENFORCE_GE(head_number, 1,
                    platform::errors::InvalidArgument(
                        "The head number should be greater equal 1,"
                        "but received head number %d",
                        head_number));
  PADDLE_ENFORCE_LE(
      head_number, dim_a.width_,
      platform::errors::InvalidArgument(
          "The head number should be less equal first input width,"
          "but received first input width %d"
          ",  head_number %d",
          dim_a.width_, head_number));
1694 1695 1696
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;

1697
  if (mat_b_split_vertical) {
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
    PADDLE_ENFORCE_EQ(
        dim_b.height_, dim_a.width_ / head_number,
        platform::errors::InvalidArgument(
            "The second input height should be equal than first input width,"
            "but received second input height %d, first input width %d",
            dim_b.height_, dim_a.width_ / head_number));
    PADDLE_ENFORCE_EQ(
        dim_a.width_ % head_number, 0,
        platform::errors::InvalidArgument(
            "The second input width should be some times the head number"
            "but received second input width %d"
            ",  head_number %d",
            dim_b.width_, head_number));
1711 1712
  }

1713
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
    int lda = !dim_a.trans_ ? dim_a.width_ : dim_a.height_;
    int ldb = !dim_b.trans_ ? dim_b.width_ : dim_b.height_;
    int sub_matA_offset;
    int sub_matB_offset;
    int sub_matC_offset;
    int sub_mat_M = dim_a.height_;
    int sub_mat_N;
    int sub_mat_K;
    int ldc;

1724
    for (int i = 0; i < head_number; i++) {
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
      sub_matA_offset = dim_a.trans_
                            ? i * (dim_a.width_ / head_number) * dim_a.height_
                            : i * (dim_a.width_ / head_number);
      if (mat_b_split_vertical) {
        sub_matB_offset = dim_b.trans_
                              ? i * (dim_b.width_ / head_number) * dim_b.height_
                              : i * (dim_b.width_ / head_number);
        sub_matC_offset = i * dim_b.width_ / head_number;

        sub_mat_N = dim_b.width_ / head_number;
        sub_mat_K = dim_b.height_;

        ldc = dim_b.width_;
      } else {
        sub_matB_offset =
            dim_b.trans_ ? i * (dim_b.height_ / head_number)
                         : i * (dim_b.height_ / head_number) * dim_b.width_;
        sub_matC_offset = i * dim_b.width_;

        sub_mat_N = dim_b.width_;
        sub_mat_K = dim_a.width_ / head_number;

        ldc = head_number * dim_b.width_;
      }

      this->template GEMM<T>(transA, transB, sub_mat_M, sub_mat_N, sub_mat_K,
                             alpha, mat_a.data<T>() + sub_matA_offset, lda,
1752 1753 1754 1755
                             mat_b.data<T>() + sub_matB_offset, ldb, beta,
                             mat_out->data<T>() + sub_matC_offset, ldc);
    }
  } else {
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
    PADDLE_ENFORCE_EQ(
        (dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 ||
         dim_b.batch_size_ == 0),
        true,
        platform::errors::InvalidArgument(
            "The first input batch size should be equal than second input,"
            "either two input batch size is 0, but received first input batch "
            "size"
            " %d, second input batch size %d",
            dim_a.batch_size_, dim_b.batch_size_));
1766 1767

    this->template BatchedGEMMWithHead<T>(
1768 1769 1770
        transA, transB, dim_a.width_, dim_a.height_, dim_b.width_,
        dim_b.height_, alpha, mat_a.data<T>(), mat_b.data<T>(), beta,
        mat_out->data<T>(),
1771
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
1772
        dim_a.stride_, dim_b.stride_, head_number, mat_b_split_vertical);
1773 1774
  }
}
1775
#endif  // @} End Group Blas MKLML: MatMulWithHead
1776

Y
Use mkl  
Yu Yang 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::VINV(int n, const T *a, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VINV(n, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = 1.0 / a[i];
  }
#endif
}
Y
Yu Yang 已提交
1788

Y
Yihua Xu 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMERF(int n, const T *a, T *y,
                                             int64_t mode) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMERF(n, a, y, mode);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::erf(a[i]);
  }
#endif
}
W
Wilber 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
template <>
template <typename T>
void Blas<pten::CPUContext>::VMERF(int n, const T *a, T *y,
                                   int64_t mode) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMERF(n, a, y, mode);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::erf(a[i]);
  }
#endif
}
Y
Yihua Xu 已提交
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
#ifdef PADDLE_WITH_MKLML
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::CSRMM(
    const char *transa, const int *m, const int *n, const int *k,
    const T *alpha, const char *matdescra, const T *val, const int *indx,
    const int *pntrb, const int *pntre, const T *b, const int *ldb,
    const T *beta, T *c, const int *ldc) const {
  CBlas<T>::CSRMM(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b,
                  ldb, beta, c, ldc);
}
W
Wilber 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
template <>
template <typename T>
void Blas<pten::CPUContext>::CSRMM(const char *transa, const int *m,
                                   const int *n, const int *k, const T *alpha,
                                   const char *matdescra, const T *val,
                                   const int *indx, const int *pntrb,
                                   const int *pntre, const T *b, const int *ldb,
                                   const T *beta, T *c, const int *ldc) const {
  CBlas<T>::CSRMM(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b,
                  ldb, beta, c, ldc);
}
1836 1837
#endif

G
Guo Sheng 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::TRSM(CBLAS_SIDE side, CBLAS_UPLO uplo,
                                            CBLAS_TRANSPOSE transA,
                                            CBLAS_DIAG diag, int M, int N,
                                            T alpha, const T *A, int lda, T *B,
                                            int ldb) const {
  CBlas<T>::TRSM(CblasRowMajor, side, uplo, transA, diag, M, N, alpha, A, lda,
                 B, ldb);
}
W
Wilber 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856
template <>
template <typename T>
void Blas<pten::CPUContext>::TRSM(CBLAS_SIDE side, CBLAS_UPLO uplo,
                                  CBLAS_TRANSPOSE transA, CBLAS_DIAG diag,
                                  int M, int N, T alpha, const T *A, int lda,
                                  T *B, int ldb) const {
  CBlas<T>::TRSM(CblasRowMajor, side, uplo, transA, diag, M, N, alpha, A, lda,
                 B, ldb);
}
G
Guo Sheng 已提交
1857

Y
Yu Yang 已提交
1858 1859 1860
}  // namespace math
}  // namespace operators
}  // namespace paddle