test_layers.py 184.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18
import contextlib
import numpy as np
19
from decorator_helper import prog_scope
20
import inspect
21 22 23

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34
from paddle.fluid.dygraph import to_variable
35
from paddle.fluid.framework import _test_eager_guard
36 37 38 39 40 41 42 43 44 45 46


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

47 48 49 50 51 52 53 54
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
55 56 57 58

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
59
            paddle.seed(self.seed)
L
Leo Chen 已提交
60
            paddle.framework.random._manual_program_seed(self.seed)
61 62
            yield

63 64 65
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
66
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
67
        exe.run(fluid.default_startup_program())
68 69 70 71 72 73
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
74 75

    @contextlib.contextmanager
76
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
77
        with fluid.dygraph.guard(
78 79
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
80
            paddle.seed(self.seed)
L
Leo Chen 已提交
81
            paddle.framework.random._manual_program_seed(self.seed)
82 83 84 85
            yield


class TestLayer(LayerTest):
86 87
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
88
            def __init__(self, input_size, linear1_size=4):
89
                super().__init__()
90 91 92
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False
                )
93 94 95 96 97 98
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
99 100 101
                return ret

        with self.dynamic_graph():
102 103 104 105 106
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
107
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
108
                ret = custom(x, do_linear2=True)
109
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
110 111
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
112 113
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
114
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
115
            ret = custom(x, do_linear2=True)
116
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
117

118 119 120
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
121 122 123 124 125 126
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
127 128
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
129 130 131
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
132
            static_ret, static_ret2 = self.get_static_graph_result(
133 134
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
135
        with self.dynamic_graph():
136 137 138 139
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
140 141 142
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
143 144 145
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

146 147 148
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
149 150 151
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
152 153 154
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

155 156
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
157

158 159 160
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
161

S
songyouwei 已提交
162 163 164
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
165 166 167 168 169 170
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
S
songyouwei 已提交
171
            linear = nn.Linear(
172 173
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
174
            ret = linear(t)
175 176 177
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
178
        with self.dynamic_graph():
179 180 181 182 183
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
184 185
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
186 187 188
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
189 190
            t = base.to_variable(inp)
            linear = nn.Linear(
191 192
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
193 194 195
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

196 197
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
198

199 200 201 202 203 204 205 206
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
207 208
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
209 210 211 212 213 214 215 216
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
217 218 219
                linear = nn.Linear(
                    32,
                    4,
220 221
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
222 223 224 225 226 227 228
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
229 230 231 232 233 234
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
235 236
            flatten = nn.Flatten()
            ret = flatten(t)
237 238 239
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
240
        with self.dynamic_graph():
241 242 243 244 245 246
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

247 248 249 250 251
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

252 253
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
254 255 256 257 258 259 260 261 262

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
263 264
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
265 266 267 268 269 270 271 272
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
273 274 275
                linear = nn.Linear(
                    32,
                    4,
276 277
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
278 279 280 281
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

282 283 284
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
285 286 287 288 289 290
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
291 292 293
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
294 295 296 297 298
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
299
        with self.static_graph():
300 301 302 303 304 305
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
306
            lm = nn.LayerNorm(
307
                normalized_shape=[32, 32],
308
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
309 310
                act='sigmoid',
            )
311
            ret = lm(t)
312 313 314
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
315
        with self.dynamic_graph():
316 317 318 319
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
320 321
                    act='sigmoid',
                )
322 323 324
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

325
            lm = nn.LayerNorm(
326
                normalized_shape=[32, 32],
327
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
328 329
                act='sigmoid',
            )
330
            dy_ret = lm(base.to_variable(inp))
331
            dy_ret_value = dy_ret.numpy()
332

333
        with self.dynamic_graph():
334 335 336 337 338 339 340
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
341 342
                    act='sigmoid',
                )
343 344 345 346 347
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

348
            lm = nn.LayerNorm(
349
                normalized_shape=[32, 32],
350 351 352 353
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
354 355
                act='sigmoid',
            )
356 357 358 359
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
360

361 362 363
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
364

365
        with self.dynamic_graph():
366 367 368 369
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
370 371
                    act='sigmoid',
                )
372 373 374
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

375 376 377
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
378 379
                act='sigmoid',
            )
380 381 382
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
383 384 385 386
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
387
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
388 389
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
390
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
391 392
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
393 394

            with self.dynamic_graph():
395 396 397 398 399 400
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
401 402 403 404
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
405 406
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
407

408 409 410 411 412
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
413 414
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
415 416

        with self.dynamic_graph():
417 418 419 420 421
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

422 423
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
424
            dy_ret_value = dy_ret.numpy()
425

426 427
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
428

429 430 431 432 433
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
434 435 436 437 438 439 440
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
441 442

        with self.dynamic_graph():
443 444 445
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
446 447 448
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
449 450
                dy_eager_ret_value = dy_eager_ret.numpy()

451 452
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
453
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
454
            dy_ret_value = dy_ret.numpy()
455

456 457
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
458

M
minqiyang 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
472 473
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
474
            static_ret = self.get_static_graph_result(
475 476 477
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
478 479 480 481 482

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
483 484
                input=x, hidden=hidden, size=D * 3
            )
485
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
486 487 488
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
489 490 491
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
492 493

        with self.dynamic_graph():
494 495
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
496 497 498
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
499 500 501 502
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

503
            gru = nn.GRUUnit(size=D * 3)
504 505 506
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
507 508 509
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
510 511

        for i in range(len(static_ret)):
512 513 514 515 516 517 518 519 520
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
521

522
        with self.dynamic_graph():
523 524 525 526
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
527 528 529
                        custom_weight
                    )
                )
530 531
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
532 533 534 535 536 537
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
538
                self.assertFalse(
539 540
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
541 542 543 544
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
545 546 547 548 549 550
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
551
                for o1, o2 in zip(dy_ret1, dy_ret2):
552
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
553 554 555

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
556 557 558 559 560 561
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
562

563
            custom_weight = np.random.randn(D, D * 3).astype("float32")
564 565 566 567 568
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
569 570
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
571 572 573 574 575 576
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
577
            self.assertFalse(
578 579
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
580 581 582 583
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
584 585 586 587 588 589
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
590
            for o1, o2 in zip(dy_ret1, dy_ret2):
591
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
592 593 594

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
595 596 597
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
598
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
599

X
Xin Pan 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

622 623 624 625
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
626 627

        with self.dynamic_graph():
628 629 630 631 632 633 634 635
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
                ret = layers.elementwise_pow(ret, to_variable(n3))
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

636 637 638 639 640
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
            ret = layers.elementwise_pow(ret, to_variable(n3))
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
641
            dy_ret_value = dy_ret.numpy()
642

643 644
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
645 646 647 648 649 650

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
651
            with _test_eager_guard():
652 653 654
                min_eager_ret = layers.elementwise_min(
                    to_variable(n), to_variable(n2)
                )
H
HongyuJia 已提交
655
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
656 657 658
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

659
            min_ret = layers.elementwise_min(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
660
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
661 662
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
663

664 665 666 667
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
668

669 670 671 672 673 674 675
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
676 677 678 679 680 681 682
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
683
            out = layers.sequence_conv(seq, 2, act='sigmoid')
684 685 686 687 688 689 690 691 692
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
693 694

        with self.static_graph():
695 696 697 698 699 700 701
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
702
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
703
            out = seq_conv(seq)
704 705 706 707 708 709 710 711 712 713 714 715
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
716 717 718 719 720 721

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
722 723
                input=img,
                num_filters=10,
724
                filter_size=27,
725
                act='sigmoid',
726 727 728 729 730
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
731 732 733
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
734
                num_channels=3,
735
                num_filters=10,
736
                filter_size=27,
737
                act='sigmoid',
738 739
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
740
            out = conv2d_transpose(img)
741 742 743
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
744
        with self.dynamic_graph():
745 746 747 748 749 750
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
751 752
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
753 754 755
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

756
            conv2d_transpose = nn.Conv2DTranspose(
757
                num_channels=3,
758
                num_filters=10,
759
                filter_size=27,
760
                act='sigmoid',
761 762
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
763
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
764
            dy_rlt_value = dy_rlt.numpy()
765 766 767
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
768

769
        with self.dynamic_graph():
770 771 772 773 774
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
775 776 777 778 779 780 781 782 783 784 785 786
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
787 788 789
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
790 791
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
792 793 794 795

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
796 797
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
798
                conv2d2.weight.set_value(conv2d1_weight_np)
799 800 801
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
802 803 804
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
805
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
806 807 808

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
809 810 811 812 813 814
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
815

816 817
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
818 819 820 821 822 823 824 825 826 827 828 829 830 831
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
832 833 834 835 836 837 838
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
839 840
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
841
            conv2d2.weight.set_value(conv2d1_weight_np)
842 843 844
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
845 846 847
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
848
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
849 850 851

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
852 853 854 855 856 857
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
858

859 860 861 862 863
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
864 865 866
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
867 868 869 870 871 872 873
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
874 875 876 877 878 879
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
880 881 882 883
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

884 885 886 887 888
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
889 890 891 892 893 894
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
895 896 897 898 899
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
900 901
                act='sigmoid',
            )
902

903 904 905
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
906

907
        with self.static_graph():
908 909 910 911 912 913
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
914
            btp = nn.BilinearTensorProduct(
915 916
                3,
                3,
917 918
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
919 920
                act='sigmoid',
            )
921
            out = btp(data_x, data_y)
922 923 924
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
925
        with self.dynamic_graph():
926 927 928 929 930 931
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
932 933 934 935 936
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
937 938
                dy_eager_rlt_value = dy_eager_rlt.numpy()

939
            btp = nn.BilinearTensorProduct(
940 941
                3,
                3,
942 943
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
944 945
                act='sigmoid',
            )
946
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
947
            dy_rlt_value = dy_rlt.numpy()
948

949
        with self.dynamic_graph():
950 951
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
952 953 954
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
955 956
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

957
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
958 959 960
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
961
            dy_rlt2_value = dy_rlt2.numpy()
962

963
        with self.static_graph():
964 965 966 967 968 969 970 971 972 973 974 975 976
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
977

978 979 980 981 982
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
983

984
        with self.dynamic_graph():
985 986 987 988
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
989 990 991
                        custom_weight
                    )
                )
992
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
993 994 995 996 997 998 999 1000 1001
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1002
                self.assertFalse(
1003 1004
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1005 1006
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1007 1008 1009 1010 1011 1012
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1013
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1014 1015 1016

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1017 1018 1019 1020 1021 1022
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1023

1024
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1025 1026 1027 1028 1029
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1030
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1031 1032 1033 1034 1035 1036 1037 1038 1039
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1040 1041 1042
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1043 1044 1045 1046 1047 1048
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1049
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1050 1051 1052

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1053 1054 1055
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1056
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1057

1058
    def prelu_test(self, mode):
1059 1060
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1073 1074

        with self.static_graph():
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1087
            out = prelu(data_t)
1088 1089 1090
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1091 1092

        with self.dynamic_graph():
1093 1094 1095 1096 1097
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1098 1099
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1100 1101 1102
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1103 1104 1105 1106 1107 1108
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1109
            dy_rlt = prelu(base.to_variable(inp_np))
1110
            dy_rlt_value = dy_rlt.numpy()
1111

1112 1113 1114
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1115

1116
        with self.dynamic_graph():
1117 1118 1119 1120 1121 1122 1123
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1124 1125
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1126 1127 1128 1129
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1130 1131
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1132 1133 1134
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1135 1136
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1137
                self.assertFalse(
1138 1139
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1140 1141 1142
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1143
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1144 1145

                prelu2.weight = prelu1.weight
1146 1147 1148
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1149

1150 1151
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1164 1165 1166
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1167 1168
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1169 1170 1171 1172
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1173
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1174 1175

            prelu2.weight = prelu1.weight
1176 1177 1178
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1179

1180 1181 1182 1183 1184
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1185 1186 1187 1188 1189
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1190 1191 1192 1193 1194 1195 1196 1197 1198
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1199 1200
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1201 1202 1203
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1204
            emb_rlt = emb2(data_t)
1205 1206 1207
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1208
        with self.dynamic_graph():
1209
            with _test_eager_guard():
1210 1211 1212 1213 1214
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1215 1216 1217
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1218 1219 1220
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1221 1222
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1223 1224

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1225
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1226
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1227

1228
        with self.dynamic_graph():
1229 1230 1231 1232
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1233 1234 1235
                        custom_weight
                    )
                )
1236
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1237 1238 1239 1240 1241
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1242 1243 1244
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1245 1246 1247 1248 1249
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1250 1251 1252
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1253
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1254 1255

                emb2.weight = emb1.weight
1256 1257 1258
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1259

1260
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1261 1262 1263 1264 1265
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1266
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1267 1268 1269
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1270 1271 1272
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1273
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1274 1275 1276
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1277
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1278 1279

            emb2.weight = emb1.weight
1280 1281 1282
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1283

1284 1285 1286 1287
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1288
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1289 1290 1291 1292 1293 1294
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1295 1296 1297 1298 1299 1300 1301
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1302 1303 1304 1305 1306
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1307 1308 1309 1310 1311 1312
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1313 1314 1315
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1316
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
            nce_loss = layers.nce(
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1329 1330 1331
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1332 1333 1334
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1335

1336 1337 1338 1339
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1371

1372 1373
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1374 1375 1376 1377
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1378 1379 1380
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1381

L
Leo Chen 已提交
1382
        with self.dynamic_graph():
W
Weilong Wu 已提交
1383 1384 1385 1386
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1387 1388 1389 1390 1391 1392 1393 1394
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1418 1419 1420 1421 1422

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1423 1424 1425
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1426 1427 1428 1429 1430 1431
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1432 1433 1434 1435 1436 1437 1438 1439 1440

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1455

1456 1457
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1458
            dy_rlt_value = dy_rlt.numpy()
1459

1460 1461 1462
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1463

L
Leo Chen 已提交
1464
        with self.dynamic_graph():
W
Weilong Wu 已提交
1465
            with _test_eager_guard():
1466 1467 1468
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1469 1470
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1471 1472 1473
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1474 1475 1476 1477 1478 1479
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1480 1481 1482 1483 1484 1485 1486
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1520 1521 1522 1523 1524

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1525 1526
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1527 1528 1529 1530
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1531 1532 1533
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1534 1535 1536

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1537 1538 1539 1540 1541 1542
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1543

1544
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1545 1546 1547 1548 1549
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1550 1551 1552 1553
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1554 1555
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1556 1557 1558 1559 1560
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1594

1595 1596 1597
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1598
            self.assertFalse(
1599 1600
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1601 1602
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1603 1604
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1605
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1606 1607 1608

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1609 1610 1611
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1612
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1613

S
songyouwei 已提交
1614 1615
    def test_one_hot(self):
        with self.dynamic_graph():
1616
            with _test_eager_guard():
1617 1618 1619
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1620 1621
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1622 1623 1624 1625 1626
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1627

S
songyouwei 已提交
1628 1629 1630
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1631 1632 1633 1634 1635
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1636 1637 1638

    def test_split(self):
        with self.dynamic_graph():
1639 1640 1641
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1642 1643 1644 1645 1646
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1647 1648
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1649

S
songyouwei 已提交
1650 1651
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1652 1653 1654 1655 1656
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1657 1658
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1659 1660 1661

    def test_topk(self):
        with self.dynamic_graph():
1662 1663 1664 1665
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1666 1667 1668 1669 1670 1671 1672 1673
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1674

S
songyouwei 已提交
1675 1676 1677
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1678 1679 1680 1681 1682 1683 1684 1685
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1686

L
lujun 已提交
1687 1688
    def test_conv3d(self):
        with self.static_graph():
1689 1690 1691
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1692
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1693
            static_ret = self.get_static_graph_result(
1694
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1695 1696
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1697 1698

        with self.static_graph():
1699 1700 1701
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1702
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1703 1704
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1705
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1706 1707
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1708 1709

        with self.dynamic_graph():
1710 1711 1712 1713 1714 1715
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1716
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1717
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1718
            dy_ret = conv3d(base.to_variable(images))
1719
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1720

1721 1722 1723
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1724

1725
        with self.dynamic_graph():
1726 1727 1728 1729 1730
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3D(
                    num_channels=3, num_filters=3, filter_size=2
                )
                conv3d2 = nn.Conv3D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                )
1743 1744 1745
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1746 1747
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1748 1749 1750 1751

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1752 1753
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1754
                conv3d2.weight.set_value(conv3d1_weight_np)
1755 1756 1757
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1758 1759 1760
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1761
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1762 1763 1764

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1765 1766 1767 1768 1769 1770
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1771

1772 1773
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1774 1775 1776 1777 1778
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1779
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1780 1781 1782 1783 1784 1785
            conv3d2 = nn.Conv3D(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
            )
1786 1787 1788 1789 1790 1791 1792
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1793 1794
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1795
            conv3d2.weight.set_value(conv3d1_weight_np)
1796 1797 1798
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1799 1800 1801
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1802
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1803 1804 1805

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1806 1807 1808 1809 1810 1811
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1812

L
lujun 已提交
1813 1814 1815 1816 1817 1818 1819 1820
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1821 1822 1823 1824 1825 1826 1827
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1828
            ret = layers.row_conv(input=x, future_context_size=2)
1829 1830 1831 1832 1833 1834 1835 1836 1837
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1838 1839

        with self.static_graph():
1840 1841 1842 1843 1844 1845 1846
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1847 1848
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1849 1850 1851 1852 1853 1854 1855 1856 1857
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1858

1859
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1860

1861
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1862

1863
    def func_group_norm(self):
L
lujun 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1874 1875 1876 1877 1878 1879 1880
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1881 1882 1883
            ret = layers.group_norm(
                input=X,
                groups=2,
1884
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1896 1897

        with self.static_graph():
1898 1899 1900 1901 1902 1903 1904
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1905 1906 1907
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1908
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1909 1910
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1911
            ret = groupNorm(X)
1912 1913 1914 1915 1916 1917 1918 1919 1920
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1921 1922

        with self.dynamic_graph():
1923 1924 1925
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1926
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1927 1928
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1929
            dy_ret = groupNorm(base.to_variable(input))
1930
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1931

1932 1933
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1934

1935 1936 1937 1938 1939
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1951 1952 1953
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1954
            ret = layers.instance_norm(input=X)
1955 1956 1957
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1958 1959

        with self.static_graph():
1960 1961 1962
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1963 1964
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
1965 1966 1967
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1968 1969

        with self.dynamic_graph():
1970 1971 1972 1973 1974
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1975 1976 1977 1978 1979
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1980 1981 1982 1983 1984
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1985
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1986 1987 1988
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1989 1990 1991 1992 1993
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1994 1995 1996 1997

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1998
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1999 2000 2001 2002 2003 2004 2005
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2006
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2007 2008 2009 2010
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2022 2023 2024 2025 2026 2027 2028
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2029
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2030 2031 2032 2033 2034 2035 2036 2037 2038
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2039 2040

        with self.static_graph():
2041 2042 2043 2044 2045 2046 2047
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2048
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2049
            ret = spectralNorm(Weight)
2050 2051 2052 2053 2054 2055 2056 2057 2058
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2059 2060

        with self.dynamic_graph():
2061 2062 2063 2064 2065
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2066
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2067
            dy_ret = spectralNorm(base.to_variable(input))
2068
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2069

2070 2071 2072
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2117 2118

        with self.static_graph():
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2136
            ret = treeConv(NodesVector, EdgeSet)
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2149 2150

        with self.dynamic_graph():
2151
            with _test_eager_guard():
2152 2153 2154 2155 2156 2157
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2158 2159
                dy_eager_rlt_value = dy_eager_ret.numpy()

2160 2161 2162
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2163
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2164
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2165

2166 2167 2168
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2169

2170
        with self.dynamic_graph():
2171 2172 2173 2174
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2199
                self.assertFalse(
2200 2201
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2202 2203
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2204 2205 2206 2207 2208 2209
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2210
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2211 2212 2213

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2214 2215 2216 2217 2218 2219
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2220

2221
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2248 2249 2250
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2251 2252 2253 2254 2255 2256
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2257
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2258 2259 2260

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2261 2262 2263 2264 2265 2266
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2267

L
lujun 已提交
2268
    def test_conv3d_transpose(self):
2269 2270 2271
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2272 2273 2274

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2275 2276 2277
            out = layers.conv3d_transpose(
                input=img, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2278
            static_rlt = self.get_static_graph_result(
2279 2280
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2281 2282
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2283 2284 2285
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2286 2287
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2288 2289
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2290
        with self.dynamic_graph():
2291
            with _test_eager_guard():
2292 2293 2294 2295 2296 2297
                conv3d_transpose = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False,
                )
2298 2299 2300
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2301 2302 2303
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2304
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2305
            dy_rlt_value = dy_rlt.numpy()
2306 2307 2308
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2309

2310
        with self.dynamic_graph():
2311 2312 2313 2314 2315
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    bias_attr='eager_conv3d1_b',
                    use_cudnn=False,
                )
                conv3d2 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                    bias_attr='eager_conv3d2_b',
                    use_cudnn=False,
                )
2334 2335 2336
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2337 2338
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2339 2340 2341 2342

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2343 2344
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2345
                conv3d2.weight.set_value(conv3d1_weight_np)
2346 2347 2348
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2349 2350 2351
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2352
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2353 2354 2355

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2356 2357 2358 2359 2360 2361
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2362

2363 2364
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv3d1 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False,
            )
            conv3d2 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False,
            )
2385 2386 2387 2388 2389 2390 2391
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2392 2393
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2394
            conv3d2.weight.set_value(conv3d1_weight_np)
2395 2396 2397
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2398 2399 2400
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2401
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2402 2403 2404

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2405 2406 2407 2408 2409 2410
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2411

2412 2413 2414 2415 2416 2417 2418 2419
    def test_eye_op(self):
        np_eye = np.eye(3, 2)
        array_rlt1 = [np_eye for _ in range(3)]
        stack_rlt1 = np.stack(array_rlt1, axis=0)
        array_rlt2 = [stack_rlt1 for _ in range(4)]
        stack_rlt2 = np.stack(array_rlt2, axis=0)

        with self.dynamic_graph():
2420 2421
            with _test_eager_guard():
                eager_eye_tensor = layers.eye(num_rows=3, num_columns=2)
2422 2423 2424 2425 2426 2427
                eager_eye_tensor_rlt1 = layers.eye(
                    num_rows=3, num_columns=2, batch_shape=[3]
                )
                eager_eye_tensor_rlt2 = layers.eye(
                    num_rows=3, num_columns=2, batch_shape=[4, 3]
                )
2428 2429 2430 2431 2432 2433
                eager_diag_tensor = layers.eye(20)
                eager_eye_tensor_value = eager_eye_tensor.numpy()
                eager_eye_tensor_rlt1_value = eager_eye_tensor_rlt1.numpy()
                eager_eye_tensor_rlt2_value = eager_eye_tensor_rlt2.numpy()
                eager_diag_tensor_value = eager_diag_tensor.numpy()

2434
            eye_tensor = layers.eye(num_rows=3, num_columns=2)
2435 2436 2437 2438 2439 2440
            eye_tensor_rlt1 = layers.eye(
                num_rows=3, num_columns=2, batch_shape=[3]
            )
            eye_tensor_rlt2 = layers.eye(
                num_rows=3, num_columns=2, batch_shape=[4, 3]
            )
2441
            diag_tensor = layers.eye(20)
2442 2443 2444 2445
            eye_tensor_value = eye_tensor.numpy()
            eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
            eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
            diag_tensor_value = diag_tensor.numpy()
2446

2447
        np.testing.assert_allclose(eager_eye_tensor_value, np_eye, rtol=1e-05)
2448 2449 2450 2451 2452 2453 2454 2455 2456
        np.testing.assert_allclose(
            eager_eye_tensor_rlt1_value, stack_rlt1, rtol=1e-05
        )
        np.testing.assert_allclose(
            eager_eye_tensor_rlt2_value, stack_rlt2, rtol=1e-05
        )
        np.testing.assert_allclose(
            eager_diag_tensor_value, np.eye(20), rtol=1e-05
        )
2457 2458

        np.testing.assert_allclose(eye_tensor_value, np_eye, rtol=1e-05)
2459 2460 2461 2462 2463 2464
        np.testing.assert_allclose(
            eye_tensor_rlt1_value, stack_rlt1, rtol=1e-05
        )
        np.testing.assert_allclose(
            eye_tensor_rlt2_value, stack_rlt2, rtol=1e-05
        )
2465
        np.testing.assert_allclose(diag_tensor_value, np.eye(20), rtol=1e-05)
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

        with self.assertRaises(TypeError):
            layers.eye(num_rows=3.1)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, num_columns=2.2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=[-1])

2476
    def func_while_loop(self):
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2494
            def cond1(i):
2495 2496
                return layers.less_than(i, ten)

2497
            def body1(i):
2498 2499
                return i + 1

2500
            dy_ret = layers.while_loop(cond1, body1, [i])
2501 2502 2503 2504 2505 2506
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2507
                layers.while_loop(cond1, body2, [j])
2508

2509
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2510

2511 2512 2513 2514 2515
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2516 2517 2518 2519 2520 2521 2522 2523
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2524 2525 2526
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2527
        with self.dynamic_graph():
2528 2529 2530 2531 2532 2533 2534 2535
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2536 2537 2538 2539
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2540 2541
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2542 2543 2544 2545 2546 2547

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
2548 2549 2550
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2551
        with self.dynamic_graph():
2552 2553 2554 2555 2556 2557 2558 2559
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2560 2561 2562 2563 2564 2565 2566
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2567
        # greater than
2568 2569 2570 2571
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
2572 2573 2574
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2575
        with self.dynamic_graph():
2576 2577 2578 2579 2580 2581 2582 2583
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2584 2585 2586 2587 2588 2589 2590
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2591
        # greater equal
2592 2593 2594 2595
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
2596 2597 2598
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2599
        with self.dynamic_graph():
2600 2601 2602 2603 2604 2605 2606 2607
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
2620 2621 2622
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2623
        with self.dynamic_graph():
2624 2625 2626 2627 2628 2629 2630 2631
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
2644 2645 2646
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2647
        with self.dynamic_graph():
2648 2649 2650 2651 2652 2653 2654 2655
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2656 2657 2658 2659 2660 2661 2662
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2663 2664 2665 2666 2667 2668 2669 2670
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2687 2688 2689 2690 2691
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2692 2693 2694
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2707 2708
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2709 2710 2711
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2712 2713 2714 2715 2716
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2717 2718
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2729 2730
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2731
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2732 2733 2734 2735 2736
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2737 2738
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2739

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2759 2760 2761
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2762 2763
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2764 2765 2766 2767 2768
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2769 2770 2771 2772
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2773 2774 2775 2776 2777 2778 2779 2780 2781
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2782 2783 2784 2785 2786 2787
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2788 2789 2790
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2791 2792 2793 2794 2795 2796 2797 2798
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2799 2800 2801
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2802 2803 2804 2805
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2806 2807 2808 2809
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2845 2846
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2847 2848
                fetch_list=[out_1, out_2, out_3]
            )
2849 2850

        with self.dynamic_graph():
2851
            with _test_eager_guard():
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2873 2874 2875 2876 2877

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2878 2879 2880
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2895 2896 2897 2898 2899

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2900 2901 2902 2903 2904 2905
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2906

2907 2908 2909 2910
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2911 2912 2913 2914 2915 2916
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2917
            crop_shape1 = (1, 2, 4, 4)
2918 2919 2920
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2921 2922
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2923 2924 2925
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2926 2927
            crop_offsets3 = [0, dim1, dim2, 0]

2928 2929 2930 2931 2932 2933 2934 2935 2936
            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1
            )
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2
            )
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3
            )
2937 2938 2939 2940 2941

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2942 2943 2944
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2945 2946 2947
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2948 2949 2950

        self.assertIsNotNone(shard_label)

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2964 2965
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2966 2967 2968
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2969

L
Leo Chen 已提交
2970
        with self.dynamic_graph(force_to_use_cpu=True):
2971 2972 2973 2974 2975 2976
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2977
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2978

Y
Yu Yang 已提交
2979

2980
class TestBook(LayerTest):
H
hong 已提交
2981 2982
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_gaussian_random_batch_size_like",
                "make_kldiv_loss",
                "make_prelu",
                "make_sampled_softmax_with_cross_entropy",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2994
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2995

2996
    def func_all_layers(self):
2997 2998 2999 3000 3001
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
3002 3003 3004
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
3017 3018
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
3019

3020 3021 3022
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
3023 3024
            if method.__name__ in self.only_static_set:
                continue
3025 3026 3027 3028 3029

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
3030
                dy_result_value = dy_result.numpy()
3031

3032
            if method.__name__ in self.all_close_compare:
3033 3034 3035 3036 3037 3038
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
3039 3040 3041
                        method.__name__
                    ),
                )
3042 3043
                continue

H
hong 已提交
3044
            if method.__name__ not in self.not_compare_static_dygraph_set:
3045 3046 3047 3048
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
3049 3050 3051
                        method.__name__
                    ),
                )
3052

3053 3054 3055 3056 3057
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

3058 3059 3060
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
3061
            shape = [self._batch_size] + shape
3062 3063 3064 3065 3066
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
3067 3068 3069
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3070
        elif dtype == 'int64':
3071 3072 3073 3074 3075 3076 3077
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3078
        if base.enabled():
3079 3080 3081 3082 3083
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3084 3085
        else:
            if set_feed_dict:
3086
                self._feed_dict[name] = self._get_np_data(
3087 3088 3089 3090 3091 3092 3093 3094
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3095 3096

    def make_sampled_softmax_with_cross_entropy(self):
3097 3098 3099
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3100
            logits = self._get_data(name='Logits', shape=[256], dtype='float32')
M
minqiyang 已提交
3101
            label = self._get_data(name='Label', shape=[1], dtype='int64')
3102
            num_samples = 25
3103
            output = layers.sampled_softmax_with_cross_entropy(
3104 3105 3106
                logits, label, num_samples
            )
            return output
3107 3108

    def make_fit_a_line(self):
3109 3110 3111 3112
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3113
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3114
            y_predict = layers.fc(input=x, size=1, act=None)
3115
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3116
            cost = layers.square_error_cost(input=y_predict, label=y)
3117
            avg_cost = paddle.mean(cost)
3118
            return avg_cost
Y
Yu Yang 已提交
3119

3120
    def make_recognize_digits_mlp(self):
3121 3122 3123
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3124
            # Change g_program, so the rest layers use `g_program`
3125 3126
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3127 3128
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3129 3130 3131 3132 3133 3134
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3135
            cost = layers.cross_entropy(input=predict, label=label)
3136
            avg_cost = paddle.mean(cost)
3137
            return avg_cost
Y
Yu Yang 已提交
3138

3139
    def make_conv2d_transpose(self):
3140 3141 3142
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3143
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3144 3145 3146
            return layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28
            )
3147

3148
    def make_recognize_digits_conv(self):
3149 3150 3151 3152 3153 3154
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3155
            label = self._get_data(name='label', shape=[1], dtype='int64')
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3172 3173 3174

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3175
            avg_cost = paddle.mean(cost)
3176
            return avg_cost
Y
Yu Yang 已提交
3177

3178
    def make_word_embedding(self):
3179 3180 3181
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3182 3183
            dict_size = 10000
            embed_size = 32
3184
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3185 3186 3187
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3188 3189 3190
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3217 3218 3219

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3220 3221
                axis=1,
            )
Y
Yu Yang 已提交
3222 3223

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3224 3225 3226
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3227
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3228
            avg_cost = paddle.mean(cost)
3229
            return avg_cost
Y
Yu Yang 已提交
3230

3231
    def make_sigmoid_cross_entropy(self):
3232 3233 3234
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3235 3236
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3237
            ignore_index = -1
3238 3239 3240
            return layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index
            )
3241 3242 3243 3244 3245 3246

    def make_hsigmoid(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[2], dtype='float32')
            y = self._get_data(name='y', shape=[2], dtype='int64')
3247
            return layers.hsigmoid(input=x, label=y, num_classes=2)
W
weixing02 已提交
3248

J
JiabinYang 已提交
3249
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
3250 3251
        program2 = Program()
        with program_guard(program2):
3252 3253
            x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
            y2 = self._get_data(name='y2', shape=[4], dtype='int64')
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
            path_table = self._get_data(
                name='path_table', shape=[4, 6], dtype='int64'
            )
            path_code = self._get_data(
                name='path_code', shape=[4, 6], dtype='int64'
            )
            return layers.hsigmoid(
                input=x2,
                label=y2,
                num_classes=6,
                path_table=path_table,
                path_code=path_code,
                is_custom=True,
            )
J
JiabinYang 已提交
3268

3269
    def make_pool2d(self):
3270 3271 3272
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3273
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3274 3275 3276
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3277

K
Kaipeng Deng 已提交
3278
    def make_pool2d_infershape(self):
3279 3280 3281
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3282 3283
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
            x = fluid.layers.affine_grid(theta, out_shape=[2, 3, 244, 244])
3284 3285 3286
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3287 3288

    def make_pool3d(self):
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32'
            )
            return layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1),
            )
K
Kaipeng Deng 已提交
3301

3302
    def make_adaptive_pool2d(self):
3303 3304 3305
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3306
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3307
            return layers.adaptive_pool2d(x, [3, 3], pool_type='avg')
D
dengkaipeng 已提交
3308
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
3309 3310 3311
            return pool
            return mask
            return layers.adaptive_pool2d(x, 3, pool_type='avg')
3312
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
3313 3314
            return pool
            return mask
3315 3316

    def make_adaptive_pool3d(self):
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 244, 224, 224], dtype='float32'
            )
            return layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg')
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True
            )
            return pool
            return mask
            return layers.adaptive_pool3d(x, 3, pool_type='avg')
3330
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
3331 3332
            return pool
            return mask
3333

3334
    def make_lstm_unit(self):
3335 3336 3337 3338 3339 3340
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3341
            x_t = layers.fc(input=x_t_data, size=10)
3342 3343 3344
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3345
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3346 3347 3348
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3349
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3350 3351 3352
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3353

3354
    def make_softmax(self):
3355 3356 3357
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3358
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3359
            hid = layers.fc(input=data, size=20)
3360
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3361

3362
    def make_space_to_depth(self):
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data',
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.space_to_depth(data, 3)
J
JiabinYang 已提交
3373

3374
    def make_lrn(self):
3375 3376 3377
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3378
            data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
3379
            return layers.lrn(data)
3380

3381
    def make_get_places(self):
3382 3383 3384
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3385
            get_places(device_count=1)
X
xuezhong 已提交
3386

3387
    @prog_scope()
3388
    def make_nce(self):
Y
Yang Yu 已提交
3389 3390
        window_size = 5
        words = []
3391
        for i in range(window_size):
Y
Yang Yu 已提交
3392
            words.append(
3393 3394 3395 3396
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3397 3398

        dict_size = 10000
M
minqiyang 已提交
3399
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3400 3401

        embs = []
3402
        for i in range(window_size):
Y
Yang Yu 已提交
3403 3404 3405
            if i == label_word:
                continue

3406 3407 3408 3409 3410 3411
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3412 3413 3414 3415

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3416 3417 3418 3419 3420 3421 3422
        loss = layers.nce(
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3423
        avg_loss = paddle.mean(loss)
3424
        return avg_loss
Y
Yang Yu 已提交
3425

3426
    def make_multiplex(self):
3427 3428 3429
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3430 3431 3432
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3433
            out = layers.multiplex(inputs=[x1, x2], index=index)
3434
            return out
3435 3436

    def make_softmax_with_cross_entropy(self):
3437 3438 3439
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3440 3441
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3442
            loss, softmax = layers.softmax_with_cross_entropy(
3443 3444
                x, y, return_softmax=True
            )
3445 3446 3447
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3448
            loss = layers.softmax_with_cross_entropy(x, y)
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3463
            return loss4
3464 3465

    def make_smooth_l1(self):
3466 3467 3468
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3469 3470
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3471
            loss = layers.smooth_l1(x, y)
3472
            return loss
3473

3474
    def make_scatter(self):
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3490
            out = layers.scatter(input=x, index=idx, updates=updates)
3491
            return out
Y
yangyaming 已提交
3492

3493 3494 3495 3496
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3497
            return one_hot_label
3498

3499 3500 3501 3502 3503
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3504
            one_hot_label = layers.one_hot(input=label, depth=10)
3505 3506 3507 3508
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="int32"
            )
            return smooth_label
3509

3510
    def make_topk(self):
3511 3512 3513
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3514 3515
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3516 3517
            return values
            return indices
J
jerrywgz 已提交
3518

3519
    def make_resize_bilinear(self):
3520 3521 3522
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3523
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3524
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3525
            return output
K
Kaipeng Deng 已提交
3526 3527

    def make_resize_bilinear_by_scale(self):
3528 3529 3530
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3531 3532
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3533
            return output
3534

3535
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3536
        try:
3537 3538 3539
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3540 3541 3542 3543 3544 3545
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3546 3547 3548 3549 3550 3551
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3552 3553 3554 3555
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3556 3557 3558
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3559
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3560
            output = layers.resize_nearest(x, out_shape=[12, 12])
3561
            return output
K
Kaipeng Deng 已提交
3562 3563

    def make_resize_nearest_by_scale(self):
3564 3565 3566
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3567 3568
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3569
            return output
K
Kaipeng Deng 已提交
3570 3571 3572

    def make_resize_trilinear(self):
        try:
3573 3574 3575
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3576 3577 3578 3579 3580 3581
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3582 3583 3584 3585 3586 3587
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3588 3589 3590 3591
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3592 3593 3594
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3595 3596
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3597
            return output
K
Kaipeng Deng 已提交
3598 3599

    def make_resize_trilinear_by_scale(self):
3600 3601 3602
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3603 3604
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3605
            return output
3606

3607
    def make_polygon_box_transform(self):
3608 3609 3610
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3611
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3612
            output = layers.polygon_box_transform(input=x)
3613
            return output
3614

3615
    def make_l2_normalize(self):
3616 3617 3618
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3619
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3620
            output = layers.l2_normalize(x, axis=1)
3621
            return output
3622

3623
    def make_crop(self):
3624 3625 3626
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3627 3628
            x = self._get_data(name='x', shape=[3, 5], dtype="float32")
            y = self._get_data(name='y', shape=[2, 3], dtype="float32")
3629
            output = layers.crop(x, shape=y)
3630
            return output
3631 3632 3633 3634

    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
3635 3636
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
3637
            return iou
W
whs 已提交
3638

3639
    def make_argsort(self):
3640 3641 3642
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3643
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3644
            out, ids = layers.argsort(input=data, axis=1)
3645 3646
            return out
            return ids
3647 3648

    def make_rank_loss(self):
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            label = self._get_data(
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32",
            )
            left = self._get_data(
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32",
            )
            right = self._get_data(
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32",
            )
3670
            out = layers.rank_loss(label, left, right, name="rank_loss")
3671
            return out
3672

3673
    def make_shape(self):
3674 3675 3676 3677 3678 3679
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3680
            out = layers.shape(input)
3681
            return out
B
Bai Yifan 已提交
3682

3683
    def make_pad2d(self):
3684 3685 3686 3687 3688 3689
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
3690
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
            return out
            return out_1
W
whs 已提交
3707

3708
    def make_prelu(self):
3709 3710 3711 3712 3713 3714
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[5, 200, 100, 100], dtype="float32"
            )
J
jerrywgz 已提交
3715
            mode = 'channel'
3716 3717 3718 3719 3720 3721 3722
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu',
            )
            return out
J
jerrywgz 已提交
3723

3724
    def make_soft_relu(self):
3725 3726 3727
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3728
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3729
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
3730
            return out
T
tensor-tang 已提交
3731

3732
    def make_sigmoid(self):
3733 3734 3735
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3736
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3737
            out = layers.sigmoid(input, name='sigmoid')
3738
            return out
T
tensor-tang 已提交
3739

3740
    def make_exp(self):
3741 3742 3743
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3744
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3745
            out = layers.exp(input, name='exp')
3746
            return out
T
tensor-tang 已提交
3747

3748
    def make_tanh(self):
3749 3750 3751
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3752
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3753
            out = layers.tanh(input, name='tanh')
3754
            return out
T
tensor-tang 已提交
3755

3756
    def make_tanh_shrink(self):
3757 3758 3759
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3760
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3761
            out = layers.tanh_shrink(input, name='tanh_shrink')
3762
            return out
T
tensor-tang 已提交
3763

3764
    def make_sqrt(self):
3765 3766 3767
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3768
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3769
            out = layers.sqrt(input, name='sqrt')
3770
            return out
T
tensor-tang 已提交
3771

3772
    def make_abs(self):
3773 3774 3775
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3776
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3777
            out = layers.abs(input, name='abs')
3778
            return out
T
tensor-tang 已提交
3779

3780
    def make_ceil(self):
3781 3782 3783
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3784
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3785
            out = layers.ceil(input, name='ceil')
3786
            return out
T
tensor-tang 已提交
3787

3788
    def make_floor(self):
3789 3790 3791
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3792
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3793
            out = layers.floor(input, name='floor')
3794
            return out
T
tensor-tang 已提交
3795

3796
    def make_cos(self):
3797 3798 3799
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3800
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3801
            out = layers.cos(input, name='cos')
3802
            return out
T
tensor-tang 已提交
3803

3804
    def make_sin(self):
3805 3806 3807
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3808
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3809
            out = layers.sin(input, name='sin')
3810
            return out
T
tensor-tang 已提交
3811

3812
    def make_round(self):
3813 3814 3815
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3816
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3817
            out = layers.round(input, name='round')
3818
            return out
T
tensor-tang 已提交
3819

3820
    def make_reciprocal(self):
3821 3822 3823
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3824
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3825
            out = layers.reciprocal(input, name='reciprocal')
3826
            return out
T
tensor-tang 已提交
3827

3828
    def make_square(self):
3829 3830 3831
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3832
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3833
            out = layers.square(input, name='square')
3834
            return out
T
tensor-tang 已提交
3835

3836
    def make_softplus(self):
3837 3838 3839
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3840
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3841
            out = layers.softplus(input, name='softplus')
3842
            return out
T
tensor-tang 已提交
3843

3844
    def make_softsign(self):
3845 3846 3847
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3848
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3849
            out = layers.softsign(input, name='softsign')
3850
            return out
T
tensor-tang 已提交
3851

K
Kaipeng Deng 已提交
3852
    def make_mish(self):
3853 3854 3855
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3856 3857
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3858
            return out
K
Kaipeng Deng 已提交
3859

3860
    def make_cross_entropy(self):
3861 3862 3863
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3864 3865
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3866 3867
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3868
            return out
3869

3870 3871 3872 3873 3874
    def make_bpr_loss(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3875
            out = layers.bpr_loss(x, label)
3876
            return out
3877

3878
    def make_expand(self):
3879 3880 3881
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3882
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
3883
            out = layers.expand(x, [1, 2])
3884
            return out
W
whs 已提交
3885

3886
    def make_uniform_random_batch_size_like(self):
3887 3888 3889 3890 3891 3892
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3893
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
3894
            return out
G
fix  
gongweibao 已提交
3895

3896
    def make_gaussian_random(self):
3897 3898 3899
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3900
            out = layers.gaussian_random(shape=[20, 30])
3901
            return out
G
fix  
gongweibao 已提交
3902

3903
    def make_sampling_id(self):
3904 3905 3906 3907 3908 3909 3910 3911 3912
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3913 3914

            out = layers.sampling_id(x)
3915
            return out
G
fix  
gongweibao 已提交
3916

3917
    def make_gaussian_random_batch_size_like(self):
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0
            )
            return out
G
fix  
gongweibao 已提交
3929

3930
    def make_sum(self):
3931 3932 3933 3934 3935 3936
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3937 3938

            out = layers.sum(input)
3939
            return out
G
fix  
gongweibao 已提交
3940

3941
    def make_slice(self):
G
fix  
gongweibao 已提交
3942 3943 3944 3945
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3946 3947 3948 3949 3950 3951
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3952 3953

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3954
            return out
G
merge  
gongweibao 已提交
3955

3956
    def make_scale_variable(self):
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3969
            out = layers.scale(input, scale=scale_var)
3970 3971
            return out

3972
    def make_softshrink(self):
3973 3974 3975
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3976
            input = self._get_data(name="input", shape=[16], dtype="float32")
3977
            out = layers.softshrink(input, alpha=0.3)
3978
            return out
G
fix  
gongweibao 已提交
3979

M
minqiyang 已提交
3980
    def make_iou_similarity(self):
3981 3982 3983
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3984 3985
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3986
            out = layers.iou_similarity(x, y, name='iou_similarity')
3987
            return out
3988 3989

    def make_grid_sampler(self):
3990 3991 3992
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3993 3994
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3995
            out = layers.grid_sampler(x, grid)
3996
            return out
3997 3998

    def make_bilinear_tensor_product_layer(self):
3999 4000 4001
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4002 4003 4004 4005
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
4006
            return out
4007 4008

    def make_batch_norm(self):
4009 4010 4011 4012 4013 4014
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
4015
            out = layers.batch_norm(data)
4016
            return out
4017

4018
    def make_batch_norm_momentum_variable(self):
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
4031
            out = layers.batch_norm(data, momentum=momentum)
4032
            return out
4033

K
Kaipeng Deng 已提交
4034
    def make_inplace_abn(self):
4035 4036 4037 4038 4039 4040
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
K
Kaipeng Deng 已提交
4041
            out = layers.inplace_abn(data, act='leaky_relu', act_alpha=0.2)
4042
            return out
K
Kaipeng Deng 已提交
4043 4044

    def make_inplace_abn_momentum_variable(self):
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.inplace_abn(
                data, momentum=momentum, act='elu', act_alpha=2.0
            )
            return out
K
Kaipeng Deng 已提交
4061

4062
    def make_range(self):
4063 4064 4065
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4066
            layers.range(0, 10, 2, 'int32')
4067 4068 4069 4070 4071 4072
            layers.range(0.1, 10.0, 0.2, 'float32')
            layers.range(0.1, 10.0, 0.2, 'float64')
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
            y = layers.range(start, end, step, 'float64')
4073 4074 4075
            return y

    def make_spectral_norm(self):
4076 4077 4078 4079 4080 4081 4082 4083 4084
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
4085
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
4086
            return out
4087 4088

    def make_kldiv_loss(self):
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
4104
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
4105
            return loss
4106 4107

    def make_temporal_shift(self):
4108 4109 4110
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4111 4112
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
4113
            return out
4114 4115

    def make_shuffle_channel(self):
4116 4117 4118
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4119 4120
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
4121
            return out
4122

M
minqiyang 已提交
4123
    def make_fsp_matrix(self):
4124 4125 4126
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4127 4128 4129
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
4130
            return out
4131

M
minqiyang 已提交
4132
    def make_pixel_shuffle(self):
4133 4134 4135
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
4136 4137
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
4138
            return out
M
minqiyang 已提交
4139

R
ruri 已提交
4140
    def make_mse_loss(self):
4141 4142 4143
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
4144 4145 4146
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
4147
            return out
R
ruri 已提交
4148

4149
    def make_square_error_cost(self):
4150 4151 4152
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4153 4154 4155
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
4156
            return out
4157

4158 4159 4160 4161
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
4162 4163 4164
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
4165 4166
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
4167 4168 4169 4170
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
4171 4172 4173 4174 4175 4176

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
4177 4178 4179 4180 4181 4182 4183 4184
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
4185 4186 4187 4188

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4189
            # case 1
4190
            x = layers.data(name='x', shape=[10], dtype='float32')
4191 4192 4193
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
4194 4195 4196
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
4197
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
4198 4199 4200 4201 4202 4203
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
4204

W
whs 已提交
4205
    def test_affine_grid(self):
4206
        with self.static_graph():
W
whs 已提交
4207 4208 4209 4210
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
4211
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
W
whs 已提交
4212 4213 4214 4215 4216
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
4217

W
wangchaochaohu 已提交
4218 4219 4220 4221 4222 4223 4224
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
4225 4226 4227
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
4228 4229
            return out

4230 4231
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
4232 4233 4234 4235 4236 4237
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
4238 4239
            return out

4240 4241 4242 4243
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
4244 4245 4246
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1
            )
4247
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
4248
            return output
4249

4250 4251 4252 4253
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
4254 4255 4256 4257
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
4258

4259 4260 4261 4262 4263
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
4264
            return out
4265

4266 4267 4268 4269
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
4270
            length = layers.data(name='length', shape=[], dtype='int64')
4271
            return layers.sequence_unpad(x=x, length=length)
4272

4273 4274 4275
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4276 4277 4278
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
4279
            seq = layers.fc(input=seq_data, size=20)
4280
            return layers.sequence_softmax(seq)
4281

4282 4283 4284 4285 4286
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
4287
            return out
4288

4289 4290 4291
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
4309
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
4310
            return out
W
whs 已提交
4311

4312 4313 4314 4315
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
4316 4317 4318 4319

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
4320 4321
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
4322 4323 4324 4325
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
4326

J
Jiawei Wang 已提交
4327 4328 4329
    def test_filter_by_instag(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
            x1 = layers.data(
                name='Ins', shape=[32, 1], dtype='float32', lod_level=0
            )
            x2 = layers.data(
                name='Ins_tag',
                shape=[32, 1],
                dtype='int64',
                lod_level=0,
                stop_gradient=True,
            )
            x3 = layers.create_global_var(
                shape=[1, 1],
                value=20,
                dtype='int64',
                persistable=True,
                force_cpu=True,
                name='Filter_tag',
            )
J
Jiawei Wang 已提交
4348 4349
            out1, out2 = layers.filter_by_instag(x1, x2, x3, is_lod=True)

Z
zhoushiyu 已提交
4350 4351 4352
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4353 4354 4355
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
4356 4357 4358 4359 4360
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
4361
            return out1
Z
zhoushiyu 已提交
4362

4363 4364 4365 4366
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4367 4368 4369 4370
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
4371

S
ShenLiang 已提交
4372 4373 4374 4375 4376 4377 4378 4379 4380
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
4381 4382
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
4383 4384 4385 4386
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
4387 4388 4389 4390 4391
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
4392

S
ShenLiang 已提交
4393 4394 4395
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
4396 4397 4398
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
4399 4400 4401 4402 4403 4404 4405
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
4406 4407 4408 4409 4410
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
4411

4412
    def test_roi_pool(self):
4413 4414 4415 4416
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4417
        with self.static_graph():
4418 4419 4420 4421
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
4422 4423 4424 4425
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4426 4427

        with self.dynamic_graph():
4428 4429 4430 4431
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4432 4433 4434
                dy_eager_res = layers.roi_pool(
                    x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
                )
4435 4436
                dy_eager_res_value = dy_eager_res[0].numpy()

4437 4438 4439
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4440 4441 4442
            dy_res = layers.roi_pool(
                x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
            )
4443
            dy_res_value = dy_res[0].numpy()
4444 4445
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4446 4447 4448 4449 4450 4451 4452 4453

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4454 4455 4456 4457
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4458
        with self.static_graph():
4459 4460 4461 4462
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
4463 4464 4465 4466
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4467 4468

        with self.dynamic_graph():
4469 4470 4471 4472
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4473 4474 4475
                dy_eager_res = layers.roi_align(
                    x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
                )
4476 4477
                dy_eager_res_value = dy_eager_res.numpy()

4478 4479 4480
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4481 4482 4483
            dy_res = layers.roi_align(
                x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
            )
4484
            dy_res_value = dy_res.numpy()
4485 4486
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
        np.testing.assert_array_equal(static_res, dy_res_value)
4487

4488 4489 4490 4491 4492 4493 4494
    def test_dice_loss(self):
        num_classes = 4
        eps = 1e-6
        input_np = np.random.rand(2, 3, num_classes).astype('float32')
        label_np = np.random.randint(0, num_classes, [2, 3, 1], dtype=np.int64)

        with self.static_graph():
4495 4496 4497 4498 4499 4500
            input_ = layers.data(
                name="input", shape=[None, 3, num_classes], dtype="float32"
            )
            label_ = layers.data(
                name="label", shape=[None, 3, 1], dtype="int64"
            )
4501
            output = layers.dice_loss(input_, label_, eps)
4502 4503 4504
            static_res = self.get_static_graph_result(
                feed={'input': input_np, 'label': label_np}, fetch_list=[output]
            )[0]
4505 4506

        with self.dynamic_graph():
4507 4508 4509 4510 4511 4512
            with _test_eager_guard():
                input_ = base.to_variable(input_np)
                label_ = base.to_variable(label_np)
                dy_eager_res = layers.dice_loss(input_, label_, eps)
                dy_eager_res_value = dy_eager_res.numpy()

4513 4514 4515 4516
            input_ = base.to_variable(input_np)
            label_ = base.to_variable(label_np)
            dy_res = layers.dice_loss(input_, label_, eps)
            dy_res_value = dy_res.numpy()
4517 4518
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4519

4520 4521 4522 4523
    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
4524 4525 4526
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
4527
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
4528
            return output
4529 4530 4531 4532 4533 4534

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
4535
            return out
4536 4537 4538 4539

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
4540 4541 4542 4543 4544 4545
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
4546 4547 4548 4549 4550 4551

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
4552
            return out
4553 4554 4555 4556

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
4557 4558 4559 4560 4561 4562
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
4563
            out = layers.flatten(x, axis=1, name="flatten")
4564
            return out
4565

Z
zhoukunsheng 已提交
4566 4567 4568 4569 4570 4571 4572
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4573 4574 4575 4576
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
4577
            return out
4578

4579 4580 4581 4582
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4583 4584 4585 4586 4587 4588
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
4589 4590
            return concat1, concat2

C
cjt222 已提交
4591
    def test_deform_roi_pooling(self):
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4624

4625
    def test_retinanet_target_assign(self):
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4688

4689
    def test_sigmoid_focal_loss(self):
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4712

4713
    def test_addmm(self):
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4729 4730

            out = paddle.addmm(input=input, x=x, y=y)
4731
            return out
4732

4733
    def test_retinanet_detection_output(self):
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4761 4762 4763 4764 4765 4766 4767 4768 4769
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4770 4771 4772
                nms_eta=1.0,
            )
            return nmsed_outs
4773

4774 4775 4776
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4777 4778 4779 4780 4781 4782
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64'
            )
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64'
            )
4783
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length,
            )
            return output
4794

4795 4796
    def test_edit_distance(self):
        with self.static_graph():
4797 4798 4799 4800 4801 4802
            predict = layers.data(
                name='predict', shape=[-1, 1], dtype='int64', lod_level=1
            )
            label = layers.data(
                name='label', shape=[-1, 1], dtype='int64', lod_level=1
            )
4803 4804 4805
            evaluator = fluid.evaluator.EditDistance(predict, label)
            return evaluator.metrics

4806 4807 4808 4809
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4810 4811 4812 4813 4814 4815 4816 4817 4818
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4830 4831
                        batch_first=batch_first,
                    )
4832

Y
Yu Yang 已提交
4833

4834 4835 4836 4837
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4859 4860 4861 4862 4863 4864
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4865 4866
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4867
        super().__init__()
4868
        self.weight = self.create_parameter(
4869 4870
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4901 4902
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4903
        super().__init__()
J
Jiabin Yang 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4915
        super().__init__()
J
Jiabin Yang 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4931
if __name__ == '__main__':
4932
    paddle.enable_static()
Y
Yu Yang 已提交
4933
    unittest.main()