op_teller.cc 90.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
W
weishengying 已提交
21 22 23 24 25
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
26

W
wanghuancoder 已提交
27 28 29 30 31 32
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

33 34 35 36 37 38
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
39
  SimpleOpTypeSetTeller() {
40
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
41
    // use TensorRT plugin
42
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
43 44
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
45 46
    int8_teller_set.insert("multiclass_nms3");
    int8_teller_set.insert("multiclass_nms");
47
#endif
W
wenbin 已提交
48 49
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
50
    teller_set.insert("flatten_contiguous_range");
51
    int8_teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
52 53 54 55
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
56
#endif
W
wenbin 已提交
57
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
58 59
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
60 61
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
62 63 64 65 66 67
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
68 69
#endif
  }
70

W
weishengying 已提交
71 72 73 74 75 76 77 78 79 80
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // do not support the op which is labeled the `skip_quant`
    if ((desc.HasAttr("namescope") &&
         PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
             "/skip_quant_2/") ||
        desc.HasAttr("skip_quant"))
      return false;
81
    std::unordered_set<std::string> act_op_list = {
82 83 84 85 86 87 88 89 90 91 92 93
        "relu",        "relu6",      "sigmoid",
        "elu",         "selu",       "softsign",
        "softplus",    "stanh",      "thresholded_relu",
        "exp",         "log",        "sqrt",
        "abs",         "sin",        "cos",
        "tan",         "tanh",       "sinh",
        "cosh",        "asin",       "acos",
        "atan",        "asinh",      "atanh",
        "ceil",        "floor",      "erf",
        "reciprocal",  "silu",       "celu",
        "tanh_shrink", "logsigmoid", "sign",
        "logical_not"};
94
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
95
      auto* block = desc.Block();
96 97 98 99 100 101
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
102 103 104 105 106 107 108 109
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 in tensorrt.";
        return false;
      }
110 111 112 113 114 115
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
#endif
J
JingZhuangzhuang 已提交
116 117
    }

118 119 120 121 122 123
    // In static shape mode in TRT, we can't allow that op's input is a
    // 1D-tensor So we filter it here. Some op like elementwise having "Y" too,
    // but that is dealt with in the specified op, here just the common case
    if (!with_dynamic_shape) {
      std::string X_name;
      auto inputs = desc.Inputs();
124
      if (inputs.count("X") && !desc.Input("X").empty()) {
125
        X_name = desc.Input("X")[0];
126
      } else if (inputs.count("Input") && !desc.Input("Input").empty()) {
127 128 129 130 131 132 133 134 135 136 137 138 139
        X_name = desc.Input("Input")[0];
      }
      auto* block = desc.Block();
      if (block) {
        auto* x_var_desc = block->FindVar(X_name);
        // Can't get feed op's TensorDesc
        if (op_type != "feed" && x_var_desc && !x_var_desc->Persistable()) {
          const auto x_shape = x_var_desc->GetShape();
          if (x_shape.size() == 1) return false;
        }
      }
    }

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

156
    if (op_type == "pool2d") {
157 158 159 160 161 162 163
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

164
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
165
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
166 167
      if (paddings.size() > 2) {
        return false;
168
      }
169 170 171 172 173 174 175 176 177 178
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
179 180
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
181
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
182 183 184 185
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
186 187 188 189
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
190
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
191 192 193 194 195
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
196 197
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
198
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
199
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
200
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
201
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
202
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
203 204 205 206 207 208 209 210 211 212 213 214 215
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
216 217 218 219
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
220 221
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

245 246
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
247 248 249 250
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
251
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
252 253 254 255 256 257 258 259 260 261 262 263 264 265
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
266

W
wenbin 已提交
267
// strides > 1 and 'SAME' is only supported by trt7.0 above
268
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
269 270 271 272
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
273
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
274 275
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
276
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
277 278 279 280 281 282
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
283 284 285 286
          }
        }
      }
#endif
287 288
    }

W
wangxinxin08 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    if (op_type == "deformable_conv") {
      if (with_dynamic_shape) {
        VLOG(3) << "Deformable conv trt plugin does not support dynamic shape";
        return false;
      }
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
309
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
310 311 312 313 314 315 316 317
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
318
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
319 320 321 322 323 324 325
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
326
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
327 328 329 330 331 332 333
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

334 335 336 337 338 339
    if (op_type == "bmm") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "sign op is only supported by trt8.2 above ";
      return false;
#endif
    }

    if (op_type == "logical_not") {
#if IS_TRT_VERSION_GE(8400)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "logical_not op is only supported by trt8.4 above because of "
                 "cast op";
      return false;
#endif
    }

363 364 365 366 367 368 369 370 371 372 373 374 375 376
    if (op_type == "matmul_v2") {
      if (!with_dynamic_shape) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      return true;
    }

377 378
    if (op_type == "matmul") {
      auto* block = desc.Block();
379 380 381 382 383 384
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

      // not support broadcast
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() != y_shape.size()) {
        VLOG(3)
            << "matmul op not support broadcast, please check inputs'shape. ";
        return false;
      }
      uint64_t dims = 2;
      for (size_t i = 0; i < x_shape.size() - dims; ++i) {
        if (x_shape[i] != y_shape[i] && (x_shape[i] == 1 || y_shape[i] == 1)) {
          VLOG(3) << "matmul op not support broadcast, please check "
                     "inputs'shape[i]. ";
          return false;
        }
      }

405 406 407 408 409
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
410
            VLOG(3)
P
Pei Yang 已提交
411 412
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
413 414 415 416 417
            return false;
          }
        }
      }
    }
W
Wilber 已提交
418 419 420 421 422 423 424 425 426 427 428 429
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }
430 431 432 433 434
    if (op_type == "group_norm") {
      bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
      if (has_attrs == false) return false;
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
435 436 437 438 439 440 441
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
442 443 444 445
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
446
      }
R
Ruibiao Chen 已提交
447
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
448 449
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
450 451 452 453 454
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
455
        }
456 457
      }
    }
458 459 460
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
461 462
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
463
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
464 465 466 467
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
468 469 470 471 472 473
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
474 475 476
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
477
      if (axis.size() != x_shape.size()) return false;
478
      int dims = x_shape.size();
W
wenbin 已提交
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
498
        return false;
499 500
      }
    }
501
    if (op_type == "flatten2" || op_type == "flatten") {
502 503 504
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
505 506
#if IS_TRT_VERSION_GE(7130)
#else
507
        if (with_dynamic_shape) return false;
508
#endif
R
Ruibiao Chen 已提交
509
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
510 511 512
        if (axis != 1) return false;
      }
    }
513 514
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
515 516
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
544

545
    if (op_type == "gather") {
546 547 548 549 550 551 552 553 554
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
555
        auto* block = desc.Block();
556 557 558 559 560 561
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
562 563 564 565 566 567 568 569 570 571

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);

        // The index input must be int32 datatype.
        if (index_var_desc->GetDataType() !=
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "gather op Index input data type must be int32";
          return false;
        }
F
feng_shuai 已提交
572
#if !IS_TRT_VERSION_GE(7000)
573 574 575 576 577 578
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
579
#endif
580
      }
581
    }
Z
zlsh80826 已提交
582

583
    if (op_type == "gather_nd") {
584 585
      if (!with_dynamic_shape) return false;

586
      auto* block = desc.Block();
587 588 589 590 591 592
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
593

594 595 596 597 598 599 600 601 602 603
      auto index_var_name = desc.Input("Index")[0];
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "gather_nd op Index input data type must be int32";
        return false;
      }

604 605 606
#if IS_TRT_VERSION_LT(8200)
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
607 608
      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
609 610 611 612 613 614
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

615 616 617 618 619
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
620
#endif
621 622
    }

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) return false;
      auto* block = desc.Block();
      auto input_var_name = desc.Input("Input")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* input_var_desc = block->FindVar(input_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "take_along_axis op Index input data type must be int32";
        return false;
      }

      const auto input_shape = input_var_desc->GetShape();
      const auto index_shape = index_var_desc->GetShape();
      if (input_shape.size() != index_shape.size()) {
        VLOG(3) << "take_along_axis op Index input dims size ["
                << index_shape.size() << " ] not equal to input dims size ["
                << input_shape.size() << "]";
        return false;
      }
#else
      VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
      return false;
#endif
    }

653 654 655 656
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
657 658 659 660 661 662
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
663
      if (!has_attrs) return false;
Z
zlsh80826 已提交
664 665
    }

666 667 668 669 670 671
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

672
    if (op_type == "arg_max") {
673 674 675 676 677 678
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

679
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
680
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
681
                     : -1;
R
Ruibiao Chen 已提交
682 683
      bool flatten = PADDLE_GET_CONST(bool, desc.GetAttr("flatten"));
      int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
684 685 686
      if (axis == 0 || flatten || dtype != 2) return false;
    }

687 688
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
689
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
690
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
691
      if (data_layout != phi::DataLayout::kNCHW) return false;
692 693

      auto* block = desc.Block();
694 695 696 697 698 699
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
700 701 702 703 704 705
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
706 707
    }

708
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
709
      auto* block = desc.Block();
710 711 712 713 714 715
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
716 717 718 719 720 721 722 723
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
724 725 726 727
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
728
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
729 730 731 732 733 734 735 736 737 738 739 740
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

741 742 743
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
744
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
745 746
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
747
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
748 749
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
750
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
751 752 753 754 755 756
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

757
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
758 759
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
760 761 762
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
763
      if (desc.HasAttr("data_layout")) {
764
        auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
765
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
766 767
        if (data_layout != phi::DataLayout::kNCHW &&
            data_layout != phi::DataLayout::kNHWC)
768 769
          return false;
      }
770
      auto interp_method =
R
Ruibiao Chen 已提交
771
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
772
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
773 774 775 776 777
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
778 779 780 781
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
782
        }
783 784
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
785 786
          return false;
        }
787
      }
788 789 790 791 792 793 794 795 796
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
797
    }
798

799
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
800 801 802 803 804 805
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
806 807 808
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
809
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
810
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
811 812
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC)
813 814
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
815
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
816
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
817 818 819
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
820
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
821
        if (scale.size() < 2) return false;
822 823 824 825 826 827 828 829
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

830
    if (op_type == "bilinear_interp_v2") {
C
ccrrong 已提交
831 832 833 834 835 836
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
        if (desc.Input("SizeTensor").size() >= 1) {
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
856 857
        if (!with_dynamic_shape) {
          VLOG(3) << "Static shape don't support the OutSize for op_type "
858 859 860 861 862
                  << op_type;
          return false;
        }
      }

863
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
864
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
865 866
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC) {
867 868 869 870 871
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
872
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
873 874 875 876 877 878
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
879 880
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
881 882 883 884 885 886 887 888 889 890 891
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
892
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
893 894 895 896 897 898 899
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
900 901
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

927 928 929 930 931 932 933 934 935 936 937 938 939 940
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

941
    if (op_type == "squeeze2") {
942 943 944 945 946 947 948
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

949 950
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
951
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
970
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

986
    if (op_type == "batch_norm") {
C
ccrrong 已提交
987 988
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
989 990 991 992 993 994 995 996 997
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
998 999 1000 1001 1002 1003
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
1004 1005 1006 1007 1008 1009
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1020 1021 1022 1023 1024 1025 1026 1027 1028
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
          return false;
        }
      }
1040 1041
      if (!desc.HasAttr("axis")) {
        return false;
1042
      }
R
Ruibiao Chen 已提交
1043
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1044 1045 1046 1047 1048 1049 1050

      if (axis == 0) {
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
                   "TensorRT";
        return false;
      }
      auto* block = desc.Block();
1051 1052 1053 1054 1055 1056
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1057 1058 1059 1060 1061 1062 1063
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1064
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1065 1066 1067
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1068
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1101 1102
        }
      }
1103 1104 1105 1106
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1107
    }
1108

1109 1110 1111 1112 1113 1114 1115 1116
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
1117 1118 1119 1120 1121 1122
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1123 1124 1125
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1126
      auto dtype = x_var_desc->GetDataType();
W
wenbin 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
      if (!with_dynamic_shape) {
        // At present, only support float32 or float16 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16)) {
          return false;
        }
        if (x_shape.size() == 1) {
          VLOG(3)
              << "Scale op does not support 1-dimensional input in tensorrt";
          return false;
        }
      } else {
        // At present, only support float32 or float16 or int32 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16 ||
              dtype == framework::proto::VarType::INT32)) {
          return false;
        }
1145
      }
1146
    }
1147

F
feng_shuai 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1159 1160 1161 1162 1163
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1164 1165 1166 1167 1168 1169 1170 1171
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
        if (desc.Input("SequenceLength").size()) {
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    if (op_type == "fill_any_like") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the fill_any_like does not support static shape yet";
        return false;
      }
      int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
      if (dtype != -1 && dtype != 2 && dtype != 5) {
        VLOG(3) << "the fill_any_like only supports int32 and float32";
        return false;
      }
      if (dtype == -1) {
        auto* block = desc.Block();
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        auto input_type = x_var_desc->GetDataType();
        if (input_type != framework::proto::VarType::INT32 &&
            input_type != framework::proto::VarType::FP32) {
          VLOG(3) << "the fill_any_like only supports int32 and float32";
          return false;
        }
      }
    }

1245
    if (op_type == "slice") {
1246 1247
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1248
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1249 1250 1251
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1252 1253
            return false;
          }
1254 1255
        }
      }
1256 1257
      std::vector<int> axes;
      if (!desc.HasAttr("axes")) {
1258
        VLOG(3) << "The necessary attributes of the slice operator axes "
1259
                   " are missing.";
1260 1261
        return false;
      } else {
1262
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1273 1274
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
1275 1276 1277 1278 1279 1280 1281 1282
      if (slice_inputs.find("StartsTensor") != slice_inputs.end() &&
          desc.Input("StartsTensor").size()) {
        VLOG(3) << "The Slice has StartsTensor input.";
      } else {
        if (!desc.HasAttr("starts")) {
          VLOG(3) << "The necessary attributes of the slice operator starts or "
                     "StartsTensor"
                     " are missing.";
1283
          return false;
1284 1285 1286 1287 1288 1289 1290 1291
        } else {
          std::vector<int> starts =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
          if (axes.size() != starts.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and starts are not equal.";
            return false;
          }
1292 1293
        }
      }
1294 1295 1296 1297 1298 1299 1300 1301
      if (slice_inputs.find("EndsTensor") != slice_inputs.end() &&
          desc.Input("EndsTensor").size()) {
        VLOG(3) << "The Slice has EndsTensor input.";
      } else {
        if (!desc.HasAttr("ends")) {
          VLOG(3) << "The necessary attributes of the slice operator ends or "
                     "EndsTensor"
                     " are missing.";
1302
          return false;
1303 1304 1305 1306 1307 1308 1309 1310
        } else {
          std::vector<int> ends =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
          if (axes.size() != ends.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and ends are not equal.";
            return false;
          }
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
        if (desc.Input("StartsTensorList").size()) {
          return false;
        }
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
        if (desc.Input("EndsTensorList").size()) {
          return false;
        }
      }
1323 1324
    }

1325
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1326
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
1327
        op_type == "elementwise_pow" || op_type == "elementwise_min" ||
W
wenbin 已提交
1328
        op_type == "elementwise_max" || op_type == "elementwise_floordiv") {
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1347
      auto* block = desc.Block();
1348 1349 1350 1351 1352 1353
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1354 1355 1356 1357
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1358 1359 1360 1361 1362 1363 1364

      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1365 1366
        return false;
      }
1367 1368 1369 1370
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1371
        return false;
1372
      }
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }
1385 1386 1387 1388 1389 1390 1391 1392
    // remember that 1D input in static shape mode is filtered at the beginning
    if (op_type == "sum") {
      return true;
    }

    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }

1405 1406
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1407 1408 1409
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1434

1435
#if IS_TRT_VERSION_LT(7000)
1436
      if (desc.HasAttr("approximate")) {
1437
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1438
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1439
      }
1440
#endif
1441 1442

      auto* block = desc.Block();
1443 1444 1445 1446 1447 1448
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1449

1450 1451 1452 1453 1454 1455 1456
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ValueTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensorList").size()) return false;
      }
R
Ruibiao Chen 已提交
1496
      int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
1497 1498 1499 1500 1501 1502
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    if (op_type == "instance_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1540 1541
    }

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
R
Ruibiao Chen 已提交
1557 1558
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1559 1560 1561 1562
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1563 1564
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1565 1566 1567 1568 1569 1570
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1571 1572 1573 1574 1575 1576 1577 1578
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1579
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1592 1593
    }

1594 1595
    if (op_type == "swish") {
      auto* block = desc.Block();
1596 1597 1598 1599 1600 1601
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1602 1603 1604 1605 1606 1607 1608 1609 1610
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1624 1625

      auto* block = desc.Block();
1626 1627 1628 1629 1630 1631
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1632 1633 1634 1635 1636 1637 1638 1639 1640
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1641 1642 1643
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt "
                   "with static shape.";
1644 1645 1646
        return false;
      }

W
Wilber 已提交
1647 1648 1649 1650 1651 1652 1653
#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1654 1655
    }

W
wangxinxin08 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "mish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1687 1688 1689 1690 1691 1692 1693
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1694 1695 1696 1697
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1698
                                     "aligned"};
1699 1700 1701 1702 1703
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1704
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1705 1706 1707
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1708
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1709 1710 1711
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1712
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1713 1714 1715 1716 1717 1718 1719 1720
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1721 1722 1723
    }

    if (op_type == "shuffle_channel") {
1724
#if !IS_TRT_VERSION_GE(8000)
1725 1726
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1727 1728
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1729 1730
        return false;
      }
1731
#endif
1732 1733
    }

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
    if (op_type == "where") {
#if !IS_TRT_VERSION_GE(8400)
      VLOG(3) << "where is not supported when TensorRT < 8.4";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the where op does not support static shape yet";
        return false;
      }
    }

1745 1746 1747 1748 1749 1750 1751
    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1763 1764 1765 1766 1767
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
1784
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
1794
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
1795 1796
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
1797 1798 1799 1800
        is_broadcastable =
            is_broadcastable || (biasqk_shape[0] == 1 && biasqk_shape[1] == 1 &&
                                 input_shape[1] == biasqk_shape[2] &&
                                 input_shape[1] == biasqk_shape[3]);
F
feng_shuai 已提交
1801 1802
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
1803 1804 1805 1806 1807 1808 1809
                  << ", 1, 1, " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << ", " << head_number << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << "/1, " << 1 << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "but got [" << biasqk_shape[0] << ", " << biasqk_shape[1]
                  << ", " << biasqk_shape[2] << ", " << biasqk_shape[3] << "].";
F
feng_shuai 已提交
1810 1811 1812
          return false;
        }
      } else {
1813 1814
#if !IS_TRT_VERSION_GE(8100)
        VLOG(3) << "The version of TRT must be greater than 8100";
1815
        return false;
F
feng_shuai 已提交
1816
#endif
1817
      }
1818 1819
    }

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
    if (op_type == "multihead_matmul_roformer") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul_roformer does not support static "
                   "shape yet";
        return false;
      }

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
                              input_shape[1] == biasqk_shape[3];
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
        return false;
#endif
      }
    }

1872
    if (op_type == "fc") {
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      // y'shapes == 2
      auto fc_inputs = desc.Inputs();
      std::string fc_y = "";
      if (fc_inputs.find("Y") != fc_inputs.end()) {
        fc_y = "Y";
      } else if (fc_inputs.find("W") != fc_inputs.end()) {
        fc_y = "W";
      } else {
        VLOG(3) << " input_y(fc_op) must be Y or W ";
        return false;
      }

      //  There is currently no input: Y(weight) more than two dimensions
      /*
      auto* y_var_desc = block->FindVar(desc.Input(fc_y)[0]);
      const auto y_shape = y_var_desc->GetShape();
      if (y_shape.size() != 2) {
        VLOG(3)
1899 1900
            << " input_y(fc_op)'shapes must be 2, but input_y(fc_op)'shapes =
      "
1901 1902 1903 1904 1905 1906
            << y_shape.size();
        return false;
      }
      // y_num_col_dims ==1
      if (desc.HasAttr("y_num_col_dims")) {
        int y_num_col_dims =
R
Ruibiao Chen 已提交
1907
            PADDLE_GET_CONST(int, desc.GetAttr("y_num_col_dims"));
1908 1909 1910 1911 1912 1913 1914
        if (y_num_col_dims != 1) {
          VLOG(3) << " fc_op'y_num_col_dims must be 1, but y_num_col_dims = "
                  << y_num_col_dims;
          return false;
        }
      }
      */
1915 1916
      int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
R
Ruibiao Chen 已提交
1917
              ? PADDLE_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
1918
              : (desc.HasAttr("in_num_col_dims")
R
Ruibiao Chen 已提交
1919
                     ? PADDLE_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
1920 1921
                     : 1);
      if (x_num_col_dims < 1) {
1922 1923 1924
        VLOG(3) << "fc_op expects x_num_col_dims >= 1, "
                   "but x_num_col_dims = "
                << x_num_col_dims;
1925 1926 1927
        return false;
      }
    }
1928

W
Wangzheee 已提交
1929 1930 1931
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
1932
      }
1933 1934 1935 1936
      if (with_dynamic_shape) {
        return true;
      }
      // Static shape does not support the input tensors: Shape and ShapeTensor
1937
      auto reshape_inputs = desc.Inputs();
1938 1939 1940 1941 1942 1943 1944 1945 1946
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
1947
      }
W
Wilber 已提交
1948
      std::vector<int> shape =
R
Ruibiao Chen 已提交
1949
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
1950
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
1962 1963 1964 1965
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
1966 1967 1968 1969
          if (input_num == shape_num) {
            return true;
          }
        }
1970
        return false;
X
xiaoxiaohehe001 已提交
1971
      }
W
Wangzheee 已提交
1972
    }
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
1989 1990 1991 1992 1993 1994
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1995 1996 1997 1998 1999
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }

W
wenbin 已提交
2000
    if (op_type == "reduce_sum" || op_type == "reduce_mean") {
2001 2002 2003 2004 2005 2006 2007
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2008 2009
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2010 2011
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2012
                   "reduce_all)";
2013 2014 2015 2016 2017 2018 2019 2020
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2021 2022
        return false;
      }
W
wenbin 已提交
2023 2024

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2025
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2026
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2027
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2028
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2029
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2030
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2031
        for (auto x : dim) {
2032
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2033
        }
2034

2035
      } else {
R
Ruibiao Chen 已提交
2036 2037
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2038 2039
          return false;
      }
2040 2041 2042 2043 2044 2045 2046

      auto dtype = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(7000)
      if (dtype != framework::proto::VarType::INT32 &&
          dtype != framework::proto::VarType::FP32) {
        VLOG(3) << "reduce op input data type must be int32 or float32";
        return false;
W
wenbin 已提交
2047
      }
2048 2049
#else
      if (dtype != framework::proto::VarType::FP32) {
2050 2051
        VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                   "< 7.0";
2052 2053 2054
        return false;
      }
#endif
2055
    }
W
wenbin 已提交
2056 2057 2058
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2059 2060 2061
      auto tile_inputs = desc.Inputs();
      if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
        if (desc.Input("repeat_times_tensor").size() >= 1) {
W
wenbin 已提交
2062
          return false;
2063 2064 2065 2066
        }
      }
      if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
        if (desc.Input("RepeatTimes").size() >= 1) {
W
wenbin 已提交
2067
          return false;
2068
        }
W
wenbin 已提交
2069 2070 2071 2072 2073
      }
      if (with_dynamic_shape) return false;
      if (!with_dynamic_shape && !desc.HasAttr("repeat_times")) return false;
    }
#endif
2074

2075 2076 2077 2078 2079
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2080 2081
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2082
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2083 2084 2085 2086 2087 2088
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2089
#endif
2090 2091
    }

W
wenbin 已提交
2092 2093 2094
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2095
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2111
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2133
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

2151 2152 2153 2154
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
2155 2156 2157
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
2158 2159 2160 2161 2162
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
2163 2164 2165
        if (x_shape.size() == 1) {
          VLOG(3) << "Hard sigmoid does not support 1-dimensional input in "
                     "tensorrt";
2166 2167 2168 2169 2170
          return false;
        }
      }
    }

C
ccrrong 已提交
2171
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2172 2173 2174 2175
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2176 2177 2178 2179 2180 2181
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2182 2183
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
C
ccrrong 已提交
2184 2185 2186 2187
      if ((in_dtype == 4 || in_dtype == 5) && out_dtype == 4) {
        VLOG(3) << "unsupport data type conversion";
        return false;
      }
2188 2189 2190 2191 2192 2193 2194
#if IS_TRT_VERSION_GE(8400)
      if (in_dtype == 0 || out_dtype == 0) {
        if (with_dynamic_shape) {
          VLOG(3) << "the cast op supports inputs and outputs of BOOL by "
                     "trt8.4 above ";
          return true;
        }
2195
      }
2196
#endif
2197
      if (!((in_dtype == 5 || in_dtype == 4 || in_dtype == 2) &&
C
ccrrong 已提交
2198
            (out_dtype == 5 || out_dtype == 4 || out_dtype == 2))) {
2199 2200
        VLOG(3) << "only valid conversions are: "
                   "(kFLOAT | kHALF | kINT32) -> (kFLOAT | kHALF | kINT32)";
C
ccrrong 已提交
2201 2202 2203 2204
        return false;
      }
    }

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
    if (op_type == "top_k_v2" || op_type == "top_k") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "top_k/top_k_v2 does not support 1-dimensional input in "
                   "tensorrt";
        return false;
      }
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2216
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2217 2218 2219 2220 2221 2222 2223
        if (axis == 0) {
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
                     "tensorrt";
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2224
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2225 2226 2227 2228 2229 2230 2231 2232
        if (!sorted) {
          VLOG(3) << "top_k_v2 does not support results not sorted in "
                     "tensorrt";
          return false;
        }
      }
    }

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

C
ccrrong 已提交
2243 2244 2245 2246 2247
    if (op_type == "equal") {
#if !IS_TRT_VERSION_GE(8000)
      VLOG(3) << "compare is not supported when TensorRT < 8.0";
      return false;
#else
R
Ruibiao Chen 已提交
2248
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2262 2263 2264 2265 2266 2267 2268
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277

    if (op_type == "preln_layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

W
Wang Bojun 已提交
2278 2279 2280 2281 2282 2283 2284
    if (op_type == "merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2285

W
wenbin 已提交
2286 2287 2288 2289 2290 2291 2292 2293
    if (op_type == "skip_merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }

2294 2295 2296 2297 2298 2299 2300 2301
    if (op_type == "lookup_table") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the lookup_table does not support "
                   "static shape yet";
        return false;
      }
    }

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
    if (op_type == "expand_v2") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto expand_v2_inputs = desc.Inputs();
      if (expand_v2_inputs.find("Shape") != expand_v2_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (expand_v2_inputs.find("expand_shapes_tensor") !=
          expand_v2_inputs.end()) {
        if (desc.Input("expand_shapes_tensor").size() >= 1) {
          return false;
        }
      }
    }

W
weishengying 已提交
2323 2324 2325 2326 2327
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
2328
  }
W
wenbin 已提交
2329

W
weishengying 已提交
2330 2331 2332 2333 2334
 private:
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
      "mul",
      "matmul",
2335
      "matmul_v2",
2336
      "bmm",
W
weishengying 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2363
      "rsqrt",
2364
      "sign",
G
gem5 已提交
2365
      "reciprocal",
2366
      "logical_not",
W
weishengying 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
      "erf",
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2381 2382
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2383
      "elementwise_floordiv",
W
weishengying 已提交
2384 2385
      "equal",
      "dropout",
2386
      "fill_any_like",
W
weishengying 已提交
2387 2388 2389 2390 2391 2392
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
2393
      "where",
W
weishengying 已提交
2394 2395
      "swish",
      "silu",
2396
      "celu",
W
weishengying 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
      "reduce_sum",
      "reduce_mean",
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "bilinear_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2432
      "multihead_matmul_roformer",
W
weishengying 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_residual_bias",
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
2453
      "layernorm_shift_partition",
2454
      "take_along_axis",
2455 2456
      "tanh_shrink",
      "logsigmoid",
W
wenbin 已提交
2457
      "preln_layernorm_shift_partition",
2458
      "lookup_table",
W
wenbin 已提交
2459 2460
      "merge_layernorm",
      "skip_merge_layernorm",
2461
      // "lookup_table_v2",
2462
      "expand_v2"};
W
wenbin 已提交
2463

W
weishengying 已提交
2464 2465 2466
  std::unordered_set<std::string> teller_set{
      "mul",
      "matmul",
2467
      "matmul_v2",
2468
      "bmm",
W
weishengying 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2495
      "rsqrt",
2496
      "sign",
G
gem5 已提交
2497
      "reciprocal",
2498
      "logical_not",
W
weishengying 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
      "erf",
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2513 2514
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2515
      "elementwise_floordiv",
W
weishengying 已提交
2516 2517
      "equal",
      "dropout",
2518
      "fill_any_like",
W
weishengying 已提交
2519 2520 2521 2522 2523 2524
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
2525
      "where",
W
weishengying 已提交
2526 2527
      "swish",
      "silu",
2528
      "celu",
W
weishengying 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
      "reduce_sum",
      "reduce_mean",
      "conv3d",
      "conv3d_transpose",
      "mish",
      "bilinear_interp_v2",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2564
      "multihead_matmul_roformer",
W
weishengying 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm",
      "preln_residual_bias",
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
      "fused_token_prune",
2586
      "layernorm_shift_partition",
2587
      "tanh_shrink",
2588
      "take_along_axis",
2589
      "logsigmoid",
W
wenbin 已提交
2590
      "preln_layernorm_shift_partition",
W
Wang Bojun 已提交
2591
      "merge_layernorm",
W
wenbin 已提交
2592
      "skip_merge_layernorm",
2593
      "lookup_table",
2594
      // "lookup_table_v2",
2595
      "expand_v2"};
W
weishengying 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
};

struct GenericPluginTeller : public Teller {
 public:
  GenericPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // only consider dynamic_shape mode
    if (!with_dynamic_shape) {
      return false;
    }
2609 2610 2611 2612
    if (op_type == "yolo_box") {
      if (!desc.HasAttr("iou_aware") && !desc.HasAttr("iou_aware_factor"))
        return false;
    }
2613 2614 2615 2616 2617 2618 2619 2620
    if (op_type == "pad3d") {
      auto pad3d_inputs = desc.Inputs();
      if (pad3d_inputs.find("Paddings") != pad3d_inputs.end()) {
        if (desc.Input("Paddings").size() >= 1) {
          return false;
        }
      }
    }
W
weishengying 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
    if (use_no_calib_int8) {
      return false;
    } else {
      framework::InitDefaultKernelSignatureMap();
      bool res = phi::OpUtilsMap::Instance().HasArgumentMappingFn(op_type) ||
                 phi::DefaultKernelSignatureMap::Instance().Has(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no KernelSignature";
        return false;
      }
      res = phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no CompatiblePhiKernel in phi.";
        return false;
      }
      auto& dynamic_infermeta_factory =
          tensorrt::DynamicMetaFnFactory::Instance();
      res = dynamic_infermeta_factory.Contains(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no DynamicMetaFn.";
        return false;
      }
      return true;
    }
  }
};

struct CustomPluginTeller : public Teller {
 public:
  CustomPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    std::string expect_plugin_name;

    if (with_dynamic_shape) {
      expect_plugin_name = op_type + "_paddle_trt_dynamic_plugin";
    } else {
      expect_plugin_name = op_type + "_paddle_trt_plugin";
    }

    int num = 0;
    auto creators = GetPluginRegistry()->getPluginCreatorList(&num);

    for (int i = 0; i < num; i++) {
      if (std::string(creators[i]->getPluginName()) == expect_plugin_name)
        return true;
    }
    return false;
  }
};

bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
W
Wangzheee 已提交
2679 2680 2681 2682 2683 2684
  // do not support the op which is labeled the `skip_quant`
  if ((desc.HasAttr("namescope") &&
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
    return false;
W
weishengying 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
  auto& default_teller = GetDefaultTeller();
  if ((*default_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::Default);
    return true;
  }
  auto& generic_plugin_teller = GetGenericPluginTeller();
  if ((*generic_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::GenericPluginCreater);
    return true;
  }
  auto& custom_plugin_teller = GetCustomPluginTeller();
  if ((*custom_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::CustomPluginCreater);
    return true;
  }
2700 2701
  return false;
}
2702

W
weishengying 已提交
2703 2704 2705 2706 2707
OpTeller::OpTeller() {
  tellers_.emplace_back(new tensorrt::SimpleOpTypeSetTeller);
  tellers_.emplace_back(new tensorrt::GenericPluginTeller);
  tellers_.emplace_back(new tensorrt::CustomPluginTeller);
}
2708 2709 2710
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle