未验证 提交 85e4f45a 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference]Add Roi_align op TRT converter unittest (#35549)

* add_roi_align

* add_roi_align

* add_roi_align_teller

* add_roi_align

* add-roi_align
上级 5928856e
......@@ -793,6 +793,36 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
"the roi_align will change the batch size.";
return false;
}
std::vector<std::string> attrs{"pooled_height", "pooled_width",
"spatial_scale", "sampling_ratio"};
for (auto const attr : attrs) {
if (!desc.HasAttr(attr)) return false;
}
const auto pooled_height =
BOOST_GET_CONST(int, desc.GetAttr("pooled_height"));
if (pooled_height <= 0) return false;
const auto pooled_width =
BOOST_GET_CONST(int, desc.GetAttr("pooled_width"));
if (pooled_width <= 0) return false;
const auto spatial_scale =
BOOST_GET_CONST(float, desc.GetAttr("spatial_scale"));
if (spatial_scale <= 0.f) return false;
const auto sampling_ratio =
BOOST_GET_CONST(int, desc.GetAttr("sampling_ratio"));
const auto aligned = BOOST_GET_CONST(bool, desc.GetAttr("aligned"));
if (sampling_ratio == -1 && aligned == true) return false;
auto roi_align_inputs = desc.Inputs();
if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
if (desc.Input("RoisNum").size() >= 1) {
return false;
}
}
}
if (op_type == "shuffle_channel") {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertRoiAlignTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch):
return np.ones([batch, 256, 32, 32]).astype(np.float32)
def generate_input2(attrs: List[Dict[str, Any]], batch):
return np.random.random([3, 4]).astype(np.float32)
def generate_input3(attrs: List[Dict[str, Any]], batch):
return np.random.random([batch]).astype(np.int32)
for num_input in [0, 1]:
for batch in [1, 2, 4]:
for spatial_scale in [0.5, 0.6]:
for pooled_height in [7, 1]:
for pooled_width in [7, 1]:
for sampling_ratio in [-1, 4, 8]:
for aligned in [True, False]:
self.num_input = num_input
if num_input == 1:
batch = 1
dics = [{
"spatial_scale": spatial_scale,
"pooled_height": pooled_height,
"pooled_width": pooled_width,
"sampling_ratio": sampling_ratio,
"aligned": aligned
}, {}]
dics_input = [{
"X": ["roi_align_input"],
"ROIs": ["ROIs"],
"RoisNum": ["RoisNum"]
}, {
"X": ["roi_align_input"],
"ROIs": ["ROIs"]
}]
program_input = [{
"roi_align_input": TensorConfig(
data_gen=partial(generate_input1,
dics, batch)),
"ROIs": TensorConfig(data_gen=partial(
generate_input2, dics, batch)),
"RoisNum": TensorConfig(
data_gen=partial(generate_input3,
dics, batch))
}, {
"roi_align_input": TensorConfig(
data_gen=partial(generate_input1,
dics, batch)),
"ROIs": TensorConfig(
data_gen=partial(generate_input2,
dics, batch),
lod=[[32, 3]])
}]
ops_config = [{
"op_type": "roi_align",
"op_inputs": dics_input[num_input],
"op_outputs": {
"Out": ["roi_align_out"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs=program_input[num_input],
outputs=["roi_align_out"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.num_input == 0:
self.dynamic_shape.min_input_shape = {
"roi_align_input": [1, 256, 32, 32],
"ROIs": [3, 4],
"RoisNum": [1]
}
self.dynamic_shape.max_input_shape = {
"roi_align_input": [1, 256, 64, 64],
"ROIs": [3, 4],
"RoisNum": [1]
}
self.dynamic_shape.opt_input_shape = {
"roi_align_input": [1, 256, 64, 64],
"ROIs": [3, 4],
"RoisNum": [1]
}
elif self.num_input == 1:
self.dynamic_shape.min_input_shape = {
"roi_align_input": [1, 256, 32, 32],
"ROIs": [3, 4]
}
self.dynamic_shape.max_input_shape = {
"roi_align_input": [1, 256, 64, 64],
"ROIs": [3, 4]
}
self.dynamic_shape.opt_input_shape = {
"roi_align_input": [1, 256, 64, 64],
"ROIs": [3, 4]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if self.num_input == 0:
if dynamic_shape == True:
return 0, 5
elif self.num_input == 1:
if dynamic_shape == True:
return 1, 3
else:
return 0, 4
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if len(program_config.inputs) == 3:
return True
return False
self.add_skip_case(teller1, SkipReasons.TRT_NOT_SUPPORT,
"INPUT RoisNum NOT SUPPORT")
def teller2(program_config, predictor_config):
if (program_config.ops[0].attrs['sampling_ratio'] == -1 and
program_config.ops[0].attrs['aligned'] == True):
return True
return False
self.add_skip_case(
teller2, SkipReasons.TRT_NOT_SUPPORT,
"SAMPLING_RATIO EQUAL TO - 1 WHEN ALIGNED IS TRUE IS NOT SUPPORT")
def test(self):
self.add_skip_trt_case()
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册