Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1aa6adb1
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1aa6adb1
编写于
8月 19, 2022
作者:
W
Wang Bojun
提交者:
GitHub
8月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Trt groupnorm dynamic plugin (#44911)
* add group_norm dyanmic plugin
上级
4528ed2a
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
749 addition
and
191 deletion
+749
-191
paddle/fluid/inference/tensorrt/convert/group_norm_op.cc
paddle/fluid/inference/tensorrt/convert/group_norm_op.cc
+40
-46
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+19
-7
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.cu
...e/fluid/inference/tensorrt/plugin/group_norm_op_plugin.cu
+263
-0
paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h
...le/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h
+255
-0
paddle/phi/kernels/gpu/group_norm_kernel.cu
paddle/phi/kernels/gpu/group_norm_kernel.cu
+92
-0
paddle/phi/kernels/group_norm_kernel.h
paddle/phi/kernels/group_norm_kernel.h
+21
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_group_norm.py
...sts/unittests/ir/inference/test_trt_convert_group_norm.py
+58
-70
python/paddle/fluid/tests/unittests/ir/inference/test_trt_group_norm_op.py
...id/tests/unittests/ir/inference/test_trt_group_norm_op.py
+0
-68
未找到文件。
paddle/fluid/inference/tensorrt/convert/group_norm_op.cc
浏览文件 @
1aa6adb1
...
...
@@ -9,11 +9,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include
<vector>
#include
"paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include <vector>
namespace
paddle
{
namespace
framework
{
class
Scope
;
...
...
@@ -59,52 +61,44 @@ class GroupNormOpConverter : public OpConverter {
framework
::
DDim
bias_dims
;
auto
scale_weights
=
GetWeight
(
scale_name
,
&
scale_dims
);
auto
bias_weights
=
GetWeight
(
bias_name
,
&
bias_dims
);
nvinfer1
::
Dims
scale_nv_dims
;
nvinfer1
::
Dims
bias_nv_dims
;
scale_nv_dims
.
nbDims
=
scale_dims
.
size
();
bias_nv_dims
.
nbDims
=
bias_dims
.
size
();
for
(
int
i
=
0
;
i
<
scale_dims
.
size
();
i
++
)
{
scale_nv_dims
.
d
[
i
]
=
scale_dims
.
at
(
i
);
if
(
engine_
->
with_dynamic_shape
())
{
int
gn_num
=
groups
;
std
::
vector
<
int64_t
>
mean_shape
({
gn_num
});
std
::
vector
<
int64_t
>
variance_shape
({
gn_num
});
plugin
::
GroupNormPluginDynamic
*
plugin
=
new
plugin
::
GroupNormPluginDynamic
(
static_cast
<
const
float
*>
(
scale_weights
.
get
().
values
),
scale_weights
.
get
().
count
,
static_cast
<
const
float
*>
(
bias_weights
.
get
().
values
),
bias_weights
.
get
().
count
,
epsilon
,
groups
,
mean_shape
,
variance_shape
);
nvinfer1
::
ILayer
*
groupnorm_layer
=
engine_
->
AddDynamicPlugin
(
&
input_itensor
,
1
,
plugin
);
auto
output_name
=
op_desc
.
Output
(
"Y"
)[
0
];
RreplenishLayerAndOutput
(
groupnorm_layer
,
"group_norm"
,
{
output_name
},
test_mode
);
}
else
{
int
gn_num
=
input_itensor
->
getDimensions
().
d
[
0
]
*
groups
;
std
::
vector
<
int64_t
>
mean_shape
({
gn_num
});
std
::
vector
<
int64_t
>
variance_shape
({
gn_num
});
plugin
::
GroupNormPlugin
*
plugin
=
new
plugin
::
GroupNormPlugin
(
static_cast
<
const
float
*>
(
scale_weights
.
get
().
values
),
scale_weights
.
get
().
count
,
static_cast
<
const
float
*>
(
bias_weights
.
get
().
values
),
bias_weights
.
get
().
count
,
epsilon
,
groups
,
mean_shape
,
variance_shape
);
nvinfer1
::
ILayer
*
groupnorm_layer
=
engine_
->
AddPlugin
(
&
input_itensor
,
1
,
plugin
);
auto
output_name
=
op_desc
.
Output
(
"Y"
)[
0
];
RreplenishLayerAndOutput
(
groupnorm_layer
,
"group_norm"
,
{
output_name
},
test_mode
);
}
for
(
int
i
=
0
;
i
<
bias_dims
.
size
();
i
++
)
{
bias_nv_dims
.
d
[
i
]
=
bias_dims
.
at
(
i
);
}
auto
*
scale_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
scale_nv_dims
,
scale_weights
.
get
());
auto
*
bias_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
bias_nv_dims
,
bias_weights
.
get
());
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
plugin_inputs
.
emplace_back
(
input_itensor
);
plugin_inputs
.
emplace_back
(
scale_layer
->
getOutput
(
0
));
plugin_inputs
.
emplace_back
(
bias_layer
->
getOutput
(
0
));
const
std
::
vector
<
nvinfer1
::
PluginField
>
fields
{
{
"eps"
,
&
epsilon
,
nvinfer1
::
PluginFieldType
::
kFLOAT32
,
1
},
{
"num_groups"
,
&
groups
,
nvinfer1
::
PluginFieldType
::
kINT32
,
1
},
};
nvinfer1
::
PluginFieldCollection
*
plugin_collections
=
static_cast
<
nvinfer1
::
PluginFieldCollection
*>
(
malloc
(
sizeof
(
*
plugin_collections
)
+
fields
.
size
()
*
sizeof
(
nvinfer1
::
PluginField
)));
plugin_collections
->
nbFields
=
static_cast
<
int
>
(
fields
.
size
());
plugin_collections
->
fields
=
fields
.
data
();
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
"GroupNormalizationPlugin"
,
"1"
);
auto
group_norm_plugin
=
creator
->
createPlugin
(
"GroupNormalizationPlugin"
,
plugin_collections
);
free
(
plugin_collections
);
auto
group_norm_plugin_layer
=
engine_
->
network
()
->
addPluginV2
(
plugin_inputs
.
data
(),
plugin_inputs
.
size
(),
*
group_norm_plugin
);
auto
output_name
=
op_desc
.
Output
(
"Y"
)[
0
];
RreplenishLayerAndOutput
(
group_norm_plugin_layer
,
"group_norm"
,
{
output_name
},
test_mode
);
}
};
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
1aa6adb1
...
...
@@ -32,11 +32,9 @@ namespace tensorrt {
// Just tell by the op_types.
struct
SimpleOpTypeSetTeller
:
public
Teller
{
SimpleOpTypeSetTeller
()
{
// TODO(baoachun) The group_norm trt plugin will check input's dim
// not -1 failed when dynamic shape mode.
// #if IS_TRT_VERSION_GE(7130)
// teller_set.insert("group_norm");
// #endif
#if IS_TRT_VERSION_GE(7130)
teller_set
.
insert
(
"group_norm"
);
#endif
#if IS_TRT_VERSION_GE(7000)
teller_set
.
insert
(
"tile"
);
teller_set
.
insert
(
"flatten_contiguous_range"
);
...
...
@@ -583,12 +581,26 @@ bool OpTeller::Tell(const framework::ir::Node* node,
const
auto
x_shape
=
x_var_desc
->
GetShape
();
}
if
(
op_type
==
"group_norm"
)
{
if
(
!
with_dynamic_shape
)
return
false
;
bool
has_attrs
=
(
desc
.
HasAttr
(
"epsilon"
)
&&
desc
.
HasAttr
(
"groups"
));
if
(
has_attrs
==
false
)
return
false
;
auto
registry
=
GetPluginRegistry
();
if
(
registry
==
nullptr
)
return
false
;
std
::
string
layout_str
=
PADDLE_GET_CONST
(
std
::
string
,
desc
.
GetAttr
(
"data_layout"
));
if
(
layout_str
!=
"NCHW"
)
{
VLOG
(
3
)
<<
"Group norm trt plugin only support NCHW layout, but got "
<<
layout_str
;
return
false
;
}
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
return
false
;
auto
x_var_name
=
desc
.
Input
(
"X"
)[
0
];
auto
*
x_var_desc
=
block
->
FindVar
(
x_var_name
);
auto
dtype
=
x_var_desc
->
GetDataType
();
if
(
dtype
!=
5
)
{
VLOG
(
3
)
<<
"Group norm trt plugin only support float32"
;
return
false
;
}
}
if
(
op_type
==
"concat"
)
{
if
(
!
desc
.
HasAttr
(
"axis"
))
{
...
...
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
浏览文件 @
1aa6adb1
...
...
@@ -8,6 +8,7 @@ list(
gelu_op_plugin.cu
pool_op_plugin.cu
swish_op_plugin.cu
group_norm_op_plugin.cu
layer_norm_op_plugin.cu
instance_norm_op_plugin.cu
emb_eltwise_layernorm_plugin.cu
...
...
paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.cu
0 → 100644
浏览文件 @
1aa6adb1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h"
#include "paddle/phi/kernels/group_norm_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
using
DataLayout
=
framework
::
DataLayout
;
int
GroupNormPlugin
::
initialize
()
TRT_NOEXCEPT
{
return
0
;
}
nvinfer1
::
Dims
GroupNormPlugin
::
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputDims
,
int
nbInputs
)
TRT_NOEXCEPT
{
return
inputDims
[
0
];
}
int
GroupNormPlugin
::
enqueue
(
int
batch_size
,
const
void
*
const
*
inputs
,
#if IS_TRT_VERSION_LT(8000)
void
**
outputs
,
void
*
workspace
,
#else
void
*
const
*
outputs
,
void
*
workspace
,
#endif
cudaStream_t
stream
)
TRT_NOEXCEPT
{
const
auto
&
input_dims
=
this
->
getInputDims
(
0
);
int
groups
=
groups_
;
float
eps
=
eps_
;
std
::
vector
<
int
>
input_shape
;
input_shape
.
push_back
(
batch_size
);
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
input_shape
.
push_back
(
input_dims
.
d
[
i
]);
}
const
auto
input_ddim
=
phi
::
make_ddim
(
input_shape
);
int
C
=
input_shape
[
1
];
PADDLE_ENFORCE_EQ
(
C
,
scale_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"scale's size should be equal to the channel number in groupnorm,"
"but got channel number:%d, scale's size:%d."
,
C
,
scale_
.
size
()));
PADDLE_ENFORCE_EQ
(
C
,
bias_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"bias's size should be equal to the channel number in groupnorm,"
"but got channel number:%d, bias's size:%d."
,
C
,
bias_
.
size
()));
int
device_id
;
cudaGetDevice
(
&
device_id
);
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
scale_t
.
Resize
(
phi
::
make_ddim
({
C
}));
bias_t
.
Resize
(
phi
::
make_ddim
({
C
}));
mean_t
.
Resize
(
phi
::
make_ddim
(
mean_shape_
));
variance_t
.
Resize
(
phi
::
make_ddim
(
variance_shape_
));
float
*
scale_d
=
scale_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
bias_d
=
bias_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
mean_d
=
mean_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
variance_d
=
variance_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
framework
::
Tensor
temp_variance_t
;
temp_variance_t
.
Resize
(
phi
::
make_ddim
(
variance_shape_
));
float
*
temp_variance_d
=
temp_variance_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
cudaMemcpyAsync
(
scale_d
,
scale_
.
data
(),
sizeof
(
float
)
*
C
,
cudaMemcpyHostToDevice
,
stream
);
cudaMemcpyAsync
(
bias_d
,
bias_
.
data
(),
sizeof
(
float
)
*
C
,
cudaMemcpyHostToDevice
,
stream
);
phi
::
GroupNormDirectCUDAFunctor
<
float
>
group_norm
;
group_norm
(
stream
,
input
,
input_shape
,
bias_d
,
scale_d
,
mean_d
,
temp_variance_d
,
groups_
,
eps_
,
output
,
mean_d
,
variance_d
,
DataLayout
::
kNCHW
);
return
cudaGetLastError
()
!=
cudaSuccess
;
}
nvinfer1
::
DimsExprs
GroupNormPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputDims
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
{
return
inputDims
[
0
];
}
bool
GroupNormPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
TRT_NOEXCEPT
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of groupnorm plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
}
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
// output
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
nvinfer1
::
DataType
GroupNormPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
TRT_NOEXCEPT
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The groupnorm Plugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
return
input_types
[
0
];
}
int
GroupNormPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
const
auto
&
input_dims
=
input_desc
[
0
].
dims
;
int
groups
=
groups_
;
float
eps
=
eps_
;
std
::
vector
<
int
>
input_shape
;
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
input_shape
.
push_back
(
input_dims
.
d
[
i
]);
}
const
auto
input_ddim
=
phi
::
make_ddim
(
input_shape
);
int
C
=
input_shape
[
1
];
int
image_size
=
input_shape
[
2
]
*
input_shape
[
3
];
int
batchSize
=
input_shape
[
0
];
std
::
vector
<
int64_t
>
batched_mean_shape
=
{
batchSize
*
mean_shape_
[
0
]};
std
::
vector
<
int64_t
>
batched_variance_shape
=
{
batchSize
*
variance_shape_
[
0
]};
PADDLE_ENFORCE_EQ
(
C
,
scale_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"scale's size should be equal to the channel number in groupnorm,"
"but got feature_size:%d, scale's size:%d."
,
C
,
scale_
.
size
()));
PADDLE_ENFORCE_EQ
(
C
,
bias_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"bias's size should be equal to the channel number in groupnorm,"
"but got feature_size:%d, bias's size:%d."
,
C
,
bias_
.
size
()));
int
device_id
;
cudaGetDevice
(
&
device_id
);
auto
input_type
=
input_desc
[
0
].
type
;
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
scale_t
.
Resize
(
phi
::
make_ddim
({
C
}));
bias_t
.
Resize
(
phi
::
make_ddim
({
C
}));
mean_t
.
Resize
(
phi
::
make_ddim
(
batched_mean_shape
));
variance_t
.
Resize
(
phi
::
make_ddim
(
batched_variance_shape
));
float
*
scale_d
=
scale_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
bias_d
=
bias_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
mean_d
=
mean_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
variance_d
=
variance_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
framework
::
Tensor
temp_variance_t
;
temp_variance_t
.
Resize
(
phi
::
make_ddim
(
batched_variance_shape
));
float
*
temp_variance_d
=
temp_variance_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
cudaMemcpyAsync
(
scale_d
,
scale_
.
data
(),
sizeof
(
float
)
*
C
,
cudaMemcpyHostToDevice
,
stream
);
cudaMemcpyAsync
(
bias_d
,
bias_
.
data
(),
sizeof
(
float
)
*
C
,
cudaMemcpyHostToDevice
,
stream
);
phi
::
GroupNormDirectCUDAFunctor
<
float
>
group_norm
;
group_norm
(
stream
,
input
,
input_shape
,
bias_d
,
scale_d
,
mean_d
,
temp_variance_d
,
groups
,
eps
,
output
,
mean_d
,
variance_d
,
DataLayout
::
kNCHW
);
}
else
{
// input not float
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The Groupnorm TRT Plugin's only support fp32 input"
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h
0 → 100644
浏览文件 @
1aa6adb1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
class
GroupNormPlugin
:
public
PluginTensorRT
{
public:
size_t
getSerializationSize
()
const
TRT_NOEXCEPT
override
{
return
getBaseSerializationSize
()
+
SerializedSize
(
scale_
)
+
SerializedSize
(
bias_
)
+
SerializedSize
(
eps_
)
+
SerializedSize
(
groups_
)
+
SerializedSize
(
mean_shape_
)
+
SerializedSize
(
variance_shape_
);
}
void
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
override
{
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
scale_
);
SerializeValue
(
&
buffer
,
bias_
);
SerializeValue
(
&
buffer
,
eps_
);
SerializeValue
(
&
buffer
,
groups_
);
SerializeValue
(
&
buffer
,
mean_shape_
);
SerializeValue
(
&
buffer
,
variance_shape_
);
}
GroupNormPlugin
(
const
float
*
scale
,
const
int
scale_num
,
const
float
*
bias
,
const
int
bias_num
,
float
eps
,
int
groups
,
std
::
vector
<
int64_t
>
mean_shape
,
std
::
vector
<
int64_t
>
variance_shape
)
:
groups_
(
groups
),
eps_
(
eps
),
mean_shape_
(
mean_shape
),
variance_shape_
(
variance_shape
)
{
scale_
.
resize
(
scale_num
);
bias_
.
resize
(
bias_num
);
std
::
copy
(
scale
,
scale
+
scale_num
,
scale_
.
data
());
std
::
copy
(
bias
,
bias
+
bias_num
,
bias_
.
data
());
}
GroupNormPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
deserializeBase
(
serialData
,
serialLength
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
scale_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
bias_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
eps_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
groups_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
mean_shape_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
variance_shape_
);
}
~
GroupNormPlugin
()
{}
int
initialize
()
TRT_NOEXCEPT
override
;
GroupNormPlugin
*
clone
()
const
TRT_NOEXCEPT
override
{
return
new
GroupNormPlugin
(
scale_
.
data
(),
scale_
.
size
(),
bias_
.
data
(),
bias_
.
size
(),
eps_
,
groups_
,
mean_shape_
,
variance_shape_
);
}
const
char
*
getPluginType
()
const
TRT_NOEXCEPT
override
{
return
"groupnorm_plugin"
;
}
int
getNbOutputs
()
const
TRT_NOEXCEPT
override
{
return
1
;
}
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nbInputDims
)
TRT_NOEXCEPT
override
;
#if IS_TRT_VERSION_LT(8000)
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
#else
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
#endif
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
override
;
private:
std
::
vector
<
float
>
scale_
;
std
::
vector
<
float
>
bias_
;
framework
::
Tensor
scale_t
;
framework
::
Tensor
bias_t
;
framework
::
Tensor
mean_t
;
framework
::
Tensor
variance_t
;
int
groups_
;
float
eps_
;
std
::
vector
<
int64_t
>
mean_shape_
;
std
::
vector
<
int64_t
>
variance_shape_
;
};
class
GroupNormPluginCreator
:
public
TensorRTPluginCreator
{
public:
const
char
*
getPluginName
()
const
TRT_NOEXCEPT
override
{
return
"groupnorm_plugin"
;
}
const
char
*
getPluginVersion
()
const
TRT_NOEXCEPT
override
{
return
"1"
;
}
nvinfer1
::
IPluginV2
*
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
TRT_NOEXCEPT
override
{
return
new
GroupNormPlugin
(
serial_data
,
serial_length
);
}
};
REGISTER_TRT_PLUGIN_V2
(
GroupNormPluginCreator
);
class
GroupNormPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
GroupNormPluginDynamic
(
const
float
*
scale
,
const
int
scale_num
,
const
float
*
bias
,
const
int
bias_num
,
float
eps
,
int
groups
,
std
::
vector
<
int64_t
>
mean_shape
,
std
::
vector
<
int64_t
>
variance_shape
)
:
groups_
(
groups
),
eps_
(
eps
),
mean_shape_
(
mean_shape
),
variance_shape_
(
variance_shape
)
{
scale_
.
resize
(
scale_num
);
bias_
.
resize
(
bias_num
);
std
::
copy
(
scale
,
scale
+
scale_num
,
scale_
.
data
());
std
::
copy
(
bias
,
bias
+
bias_num
,
bias_
.
data
());
}
GroupNormPluginDynamic
(
void
const
*
serialData
,
size_t
serialLength
)
{
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
scale_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
bias_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
eps_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
groups_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
mean_shape_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
variance_shape_
);
}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
TRT_NOEXCEPT
override
{
return
new
GroupNormPluginDynamic
(
scale_
.
data
(),
scale_
.
size
(),
bias_
.
data
(),
bias_
.
size
(),
eps_
,
groups_
,
mean_shape_
,
variance_shape_
);
}
const
char
*
getPluginType
()
const
TRT_NOEXCEPT
override
{
return
"groupnorm_plugin_dynamic"
;
}
int
getNbOutputs
()
const
TRT_NOEXCEPT
override
{
return
1
;
}
int
initialize
()
TRT_NOEXCEPT
override
{
return
0
;
}
size_t
getSerializationSize
()
const
TRT_NOEXCEPT
override
{
return
SerializedSize
(
scale_
)
+
SerializedSize
(
bias_
)
+
SerializedSize
(
eps_
)
+
SerializedSize
(
groups_
)
+
SerializedSize
(
mean_shape_
)
+
SerializedSize
(
variance_shape_
);
}
void
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
override
{
SerializeValue
(
&
buffer
,
scale_
);
SerializeValue
(
&
buffer
,
bias_
);
SerializeValue
(
&
buffer
,
eps_
);
SerializeValue
(
&
buffer
,
groups_
);
SerializeValue
(
&
buffer
,
mean_shape_
);
SerializeValue
(
&
buffer
,
variance_shape_
);
}
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
TRT_NOEXCEPT
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
TRT_NOEXCEPT
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
TRT_NOEXCEPT
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
TRT_NOEXCEPT
override
;
void
destroy
()
TRT_NOEXCEPT
override
{
delete
this
;
}
// void terminate() TRT_NOEXCEPT override;
private:
std
::
vector
<
float
>
scale_
;
std
::
vector
<
float
>
bias_
;
framework
::
Tensor
scale_t
;
framework
::
Tensor
bias_t
;
framework
::
Tensor
mean_t
;
framework
::
Tensor
variance_t
;
int
groups_
;
float
eps_
;
std
::
vector
<
int64_t
>
mean_shape_
;
std
::
vector
<
int64_t
>
variance_shape_
;
};
class
GroupNormPluginDynamicCreator
:
public
TensorRTPluginCreator
{
public:
const
char
*
getPluginName
()
const
TRT_NOEXCEPT
override
{
return
"groupnorm_plugin_dynamic"
;
}
const
char
*
getPluginVersion
()
const
TRT_NOEXCEPT
override
{
return
"1"
;
}
nvinfer1
::
IPluginV2
*
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
TRT_NOEXCEPT
override
{
return
new
GroupNormPluginDynamic
(
serial_data
,
serial_length
);
}
};
REGISTER_TRT_PLUGIN_V2
(
GroupNormPluginDynamicCreator
);
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/phi/kernels/gpu/group_norm_kernel.cu
浏览文件 @
1aa6adb1
...
...
@@ -228,6 +228,98 @@ void GroupNormKernel(const Context& dev_ctx,
data_layout
);
}
template
<
typename
T
>
void
GroupNormDirectCUDAFunctor
<
T
>::
operator
()(
gpuStream_t
stream
,
const
T
*
input
,
std
::
vector
<
int
>
input_shape
,
const
T
*
bias
,
const
T
*
scale
,
T
*
temp_mean
,
T
*
temp_variance
,
int
groups
,
float
eps
,
T
*
output
,
T
*
mean
,
T
*
variance
,
const
DataLayout
data_layout
)
{
const
auto
input_ddim
=
phi
::
make_ddim
(
input_shape
);
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
input_ddim
[
1
]
:
input_ddim
[
input_ddim
.
size
()
-
1
]);
const
int
group_size
=
C
/
groups
;
const
int
W
=
(
data_layout
==
DataLayout
::
kNCHW
?
input_ddim
[
input_ddim
.
size
()
-
1
]
:
input_ddim
[
input_ddim
.
size
()
-
2
]);
int
image_size
=
1
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
for
(
int
i
=
2
;
i
<
input_ddim
.
size
();
++
i
)
{
image_size
*=
input_ddim
[
i
];
}
}
else
{
for
(
int
i
=
1
;
i
<
input_ddim
.
size
()
-
1
;
++
i
)
{
image_size
*=
input_ddim
[
i
];
}
}
#ifdef __HIPCC__
int
block_size
=
std
::
max
(
std
::
min
(
256
,
image_size
),
64
);
#else
int
block_size
=
std
::
min
(
1024
,
image_size
);
#endif
dim3
grid
(
group_size
,
groups
,
input_ddim
[
0
]);
dim3
threads
(
block_size
,
1
,
1
);
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
using
AccT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
float
>::
Type
;
constexpr
int
vec_size
=
sizeof
(
float4
)
/
sizeof
(
float
);
int
size
=
group_size
*
image_size
;
// group element size
const
int
max_num_threads
=
1024
;
int
max_block_size
=
std
::
min
(
size
/
vec_size
,
max_num_threads
);
int
block_size_nchw
=
1
;
while
(
block_size_nchw
<
max_block_size
)
{
block_size_nchw
*=
2
;
}
block_size_nchw
=
std
::
max
(
block_size_nchw
,
phi
::
kps
::
details
::
kWarpSize
);
dim3
grids
(
input_ddim
[
0
]
*
groups
);
dim3
blocks
(
block_size_nchw
);
if
(
size
<
vec_size
*
block_size_nchw
)
{
phi
::
ScalarGetMeanAndVarNCHW
<
T
>
<<<
grids
,
blocks
,
0
,
stream
>>>
(
input
,
temp_mean
,
temp_variance
,
size
);
}
else
{
phi
::
VectorizedGetMeanAndVarNCHW
<
T
,
AccT
,
vec_size
>
<<<
grids
,
blocks
,
0
,
stream
>>>
(
input
,
temp_mean
,
temp_variance
,
size
);
}
}
else
{
phi
::
GroupNormForwardGetMeanAndVar
<
T
>
<<<
grid
,
threads
,
0
,
stream
>>>
(
input
,
input_ddim
[
0
],
C
,
W
,
image_size
,
groups
,
group_size
,
temp_mean
,
temp_variance
);
}
GroupNormForward
<
T
,
3
><<<
grid
,
threads
,
0
,
stream
>>>
(
input
,
temp_mean
,
temp_variance
,
scale
,
bias
,
input_ddim
[
0
],
C
,
W
,
image_size
,
groups
,
group_size
,
eps
,
output
,
variance
,
data_layout
);
// for now, we only support nchw for group norm
}
template
class
GroupNormDirectCUDAFunctor
<
float
>;
}
// namespace phi
PD_REGISTER_KERNEL
(
...
...
paddle/phi/kernels/group_norm_kernel.h
浏览文件 @
1aa6adb1
...
...
@@ -16,6 +16,7 @@
#include <string>
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
...
...
@@ -32,4 +33,24 @@ void GroupNormKernel(const Context& dev_ctx,
DenseTensor
*
mean
,
DenseTensor
*
variance
);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template
<
typename
T
>
class
GroupNormDirectCUDAFunctor
{
public:
void
operator
()(
gpuStream_t
stream
,
const
T
*
input
,
std
::
vector
<
int
>
input_shape
,
const
T
*
bias
,
const
T
*
scale
,
T
*
temp_mean
,
T
*
temp_variance
,
int
groups
,
float
eps
,
T
*
output
,
T
*
mean
,
T
*
variance
,
const
DataLayout
data_layout
);
};
#endif
}
// namespace phi
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_group_norm.py
浏览文件 @
1aa6adb1
...
...
@@ -24,6 +24,15 @@ import unittest
class
TrtConvertGroupNormTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
weights
=
program_config
.
weights
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
if
attrs
[
0
][
'epsilon'
]
<
0
or
attrs
[
0
][
'epsilon'
]
>
0.001
:
return
False
if
attrs
[
0
][
'groups'
]
<=
0
:
return
False
return
True
def
sample_program_configs
(
self
):
...
...
@@ -41,62 +50,56 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
return
np
.
random
.
randn
(
32
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
for
group
in
[
1
,
4
,
32
]:
for
epsilon
in
[
0.1
,
0.7
]:
for
data_layout
in
[
'NCHW'
,
'NHWC'
]:
for
i
in
[
0
,
1
]:
dics
=
[{
"epsilon"
:
epsilon
,
"groups"
:
group
,
"data_layout"
:
data_layout
},
{
"groups"
:
group
,
"data_layout"
:
data_layout
}]
ops_config
=
[{
"op_type"
:
"group_norm"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
"Scale"
:
[
"scale_weight"
],
"Bias"
:
[
"bias_weight"
]
},
"op_outputs"
:
{
"Y"
:
[
"y_output"
],
"Mean"
:
[
"mean_output"
],
"Variance"
:
[
"variance_output"
]
},
"op_attrs"
:
dics
[
i
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"scale_weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_scale
)),
"bias_weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_bias
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
dics
,
batch
))
},
outputs
=
[
"y_output"
])
yield
program_config
for
group
in
[
1
,
4
,
32
,
-
1
]:
for
epsilon
in
[
0.0001
,
0.0007
,
-
1
,
1
]:
for
data_layout
in
[
'NCHW'
]:
dics
=
[{
"epsilon"
:
epsilon
,
"groups"
:
group
,
"data_layout"
:
data_layout
}]
ops_config
=
[{
"op_type"
:
"group_norm"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
"Scale"
:
[
"scale_weight"
],
"Bias"
:
[
"bias_weight"
]
},
"op_outputs"
:
{
"Y"
:
[
"y_output"
],
"Mean"
:
[
"mean_output"
],
"Variance"
:
[
"variance_output"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"scale_weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_scale
)),
"bias_weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_bias
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
dics
,
batch
))
},
outputs
=
[
"y_output"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
16
,
32
,
32
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
16
,
16
,
16
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
,
128
,
64
]
"input_data"
:
[
4
,
64
,
128
,
128
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
64
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
32
,
64
,
64
]}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
...
...
@@ -104,13 +107,7 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
len
(
attrs
[
0
])
==
3
:
if
dynamic_shape
:
return
1
,
2
else
:
return
0
,
3
else
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
...
...
@@ -120,31 +117,22 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-5
,
1e-5
)
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-5
,
1e-5
)
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
attrs
,
True
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The goup_norm plugin will check dim not -1 failed when dynamic fp16 mode."
)
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_group_norm_op.py
已删除
100644 → 0
浏览文件 @
4528ed2a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
inference_pass_test
import
InferencePassTest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.core
import
PassVersionChecker
from
paddle.fluid.core
import
AnalysisConfig
class
TRTGroupNormTest
(
InferencePassTest
):
def
setUp
(
self
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
512
,
12
,
12
],
dtype
=
"float32"
)
out
=
self
.
append_group_norm
(
data
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
512
,
12
,
12
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TRTGroupNormTest
.
TensorRTParam
(
1
<<
30
,
1
,
1
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
dynamic_shape_params
=
TRTGroupNormTest
.
DynamicShapeParam
(
{
'data'
:
[
1
,
512
,
12
,
12
]},
{
'data'
:
[
1
,
512
,
12
,
12
]},
{
'data'
:
[
1
,
512
,
12
,
12
]},
False
)
self
.
fetch_list
=
[
out
]
def
append_group_norm
(
self
,
data
):
param_attr
=
fluid
.
ParamAttr
(
name
=
'group_norm_scale'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
))
bias_attr
=
fluid
.
ParamAttr
(
name
=
'group_norm_bias'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
return
fluid
.
layers
.
group_norm
(
data
,
groups
=
32
,
epsilon
=
0.000009999999747378752
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录