op_teller.cc 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16
#include "paddle/fluid/framework/block_desc.h"
17
#include "paddle/fluid/framework/data_layout.h"
18

W
wanghuancoder 已提交
19 20 21 22 23 24
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

25 26 27 28 29 30
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
31 32 33
  SimpleOpTypeSetTeller() {
#if IS_TRT_VERSION_GE(5130)
    teller_set.insert("relu6");
34
    teller_set.insert("hard_sigmoid");
P
Pei Yang 已提交
35
    teller_set.insert("clip");
36 37
    int8_teller_set.insert("relu6");
    int8_teller_set.insert("hard_sigmoid");
P
Pei Yang 已提交
38
    int8_teller_set.insert("clip");
39 40 41 42 43
#endif
#if IS_TRT_VERSION_GE(6000)
    teller_set.insert("fused_embedding_eltwise_layernorm");
    teller_set.insert("multihead_matmul");
    teller_set.insert("skip_layernorm");
44
    teller_set.insert("slice");
45 46 47
#endif
#if IS_TRT_VERSION_GE(7130)
    teller_set.insert("group_norm");
48 49 50 51 52 53
    int8_teller_set.insert("multihead_matmul");
    int8_teller_set.insert("skip_layernorm");
    int8_teller_set.insert("fused_embedding_eltwise_layernorm");
    int8_teller_set.insert("matmul");
    int8_teller_set.insert("stack");
    int8_teller_set.insert("slice");
54 55
#endif
  }
56

57 58 59 60 61 62 63
  bool operator()(const std::string& op_type, const framework::OpDesc& desc,
                  bool use_no_calib_int8) override {
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
64 65 66
  }

 private:
67
  // use this set for no calib int8.
68 69
  std::unordered_set<std::string> int8_teller_set{"mul",
                                                  "conv2d",
70
                                                  "conv2d_fusion",
71 72 73 74
                                                  "pool2d",
                                                  "relu",
                                                  "depthwise_conv2d",
                                                  "softmax",
75
                                                  "sigmoid",
76 77 78 79
                                                  "batch_norm",
                                                  "elementwise_add",
                                                  "leaky_relu",
                                                  "fc",
80 81 82
                                                  "concat",
                                                  "scale",
                                                  "elementwise_mul",
83 84
                                                  "conv2d_transpose",
                                                  "hard_swish"};
85
  std::unordered_set<std::string> teller_set{
86
      "mul",
87
      "matmul",
88
      "conv2d",
89
      "conv2d_fusion",
90 91 92 93
      "pool2d",
      "relu",
      "softmax",
      "sigmoid",
94
      "hard_swish",
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_mul",
      "dropout",
      "prelu",
      "conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
113
      "scale",
114
      "stack",
115 116 117 118
      "transpose2",
      "transpose",
      "flatten2",
      "flatten",
119
      "gather",
Z
zlsh80826 已提交
120
      "yolo_box",
121
      "roi_align",
122
      "affine_channel",
123
      "nearest_interp",
124
      "anchor_generator",
125
  };
126 127
};

128 129 130 131
bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
132
  // do not support the op which is labeled the `skip_quant`
133
  if ((desc.HasAttr("namescope") &&
134
       BOOST_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
135 136
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
137
    return false;
138

139
  for (auto& teller : tellers_) {
140 141 142
    if (op_type == "pool2d" || op_type == "conv2d" ||
        op_type == "depthwise_conv2d" || op_type == "conv2d_transpose") {
      std::vector<int> paddings =
143
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
144

145
      if (paddings.size() > 2) return false;
146
    }
147 148 149 150 151 152 153
    if (op_type == "matmul") {
      auto* block = desc.Block();
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
P
Pei Yang 已提交
154 155 156
            VLOG(1)
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
157 158 159 160 161
            return false;
          }
        }
      }
    }
162
    if (op_type == "group_norm") {
163
      if (!with_dynamic_shape) return false;
164 165 166 167 168 169 170 171 172 173 174
      bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
      if (has_attrs == false) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
        int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
175 176 177 178 179
        if (with_dynamic_shape) {
          if (axis < 0) return false;
        } else {
          if (axis <= 0) return false;
        }
180 181
      }
    }
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
        std::vector<int> axis =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
        if (!with_dynamic_shape && axis[0] != 0) return false;
        if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;
      }
    }
    if (op_type == "flatten2" || op_type == "flatten") {
      // flatten doesn't support dynamic shape currently
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
        if (with_dynamic_shape) return false;
        int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
        if (axis != 1) return false;
      }
    }
202

203 204 205 206
    if (op_type == "gather") {
      // current not support axis from input, use default 0
      if (!with_dynamic_shape || desc.Input("Axis").size() > 0) return false;
    }
Z
zlsh80826 已提交
207

Z
zlsh80826 已提交
208 209 210 211 212 213
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
214
      if (!has_attrs) return false;
Z
zlsh80826 已提交
215 216
    }

217 218 219 220 221 222 223
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW) return false;
    }

Z
zlsh80826 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    if (op_type == "multiclass_nms") {
      if (with_dynamic_shape) return false;
      auto* block = desc.Block();
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
            VLOG(1) << "multiclass_nms op dims != 3 not supported in tensorrt, "
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

      auto nms_top_k = BOOST_GET_CONST(int, desc.GetAttr("nms_top_k"));
      if (nms_top_k < 0) return false;

      auto keep_top_k = BOOST_GET_CONST(int, desc.GetAttr("keep_top_k"));
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

255 256 257 258 259 260 261 262 263 264 265
    if (op_type == "fc" || op_type == "mul") {
      const int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
              ? BOOST_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
              : (desc.HasAttr("in_num_col_dims")
                     ? BOOST_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
                     : 1);
      if (x_num_col_dims != 1 && x_num_col_dims != 2) {
        return false;
      }
    }
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    if (op_type == "nearest_interp") {
      std::vector<std::string> attrs{"data_layout",   "interp_method",
                                     "align_corners", "scale",
                                     "out_h",         "out_w"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW &&
          data_layout != framework::DataLayout::kNHWC)
        return false;
      auto interp_method =
          BOOST_GET_CONST(std::string, desc.GetAttr("interp_method"));
      if (interp_method != "nearest") return false;
    }
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    if (op_type == "roi_align") {
      if (!with_dynamic_shape) return false;

      std::vector<std::string> attrs{"pooled_height", "pooled_width",
                                     "spatial_scale", "sampling_ratio"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_height"));
      if (pooled_height <= 0) return false;

      const auto pooled_width =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_width"));
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
          BOOST_GET_CONST(float, desc.GetAttr("spatial_scale"));
      if (spatial_scale <= 0.f) return false;
    }

306
    if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
307 308 309 310 311 312 313 314 315
  }
  return false;
}

OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle