op_teller.cc 77.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
21

W
wanghuancoder 已提交
22 23 24 25 26 27
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

28 29 30 31 32 33
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
34
  SimpleOpTypeSetTeller() {
35
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
36
    // use TensorRT plugin
37
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
38 39
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
40
#endif
W
wenbin 已提交
41 42
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
43
    teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
44 45 46 47
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
48
#endif
W
wenbin 已提交
49
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
50 51
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
52 53
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
54 55 56 57 58 59
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
60 61
#endif
  }
62

C
ccrrong 已提交
63 64
  bool operator()(const std::string& op_type,
                  const framework::OpDesc& desc,
65 66 67 68 69 70
                  bool use_no_calib_int8) override {
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
71 72 73
  }

 private:
74
  // use this set for no calib int8.
75 76 77 78 79 80 81
  std::unordered_set<std::string> int8_teller_set{
      "mul",
      "matmul",
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
82 83 84 85 86 87
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
Z
zhupengyang 已提交
88 89
      "exp",
      "log",
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
      "atanh",
      "ceil",
      "floor",
      "erf",
105 106 107 108 109 110 111 112 113
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
114
      "elementwise_sub",
115
      "elementwise_mul",
116
      "elementwise_div",
S
shentanyue 已提交
117
      "elementwise_pow",
C
ccrrong 已提交
118
      "equal",
119 120 121 122 123 124 125 126
      "dropout",
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
L
LielinJiang 已提交
127
      "silu",
128 129 130 131 132 133 134 135
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
136 137
      "top_k",
      "top_k_v2",
138 139 140 141 142
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
143
      "yolo_box_head",
144
      "arg_max",
145 146 147 148 149 150 151 152 153 154
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
      "reduce_sum",
      "reduce_mean",
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
155
      "bilinear_interp_v2",
156 157 158 159 160 161 162 163 164
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
      "skip_layernorm",
      "slice",
F
feng_shuai 已提交
165
      "strided_slice",
166
      "fused_preln_embedding_eltwise_layernorm",
167 168 169 170 171
      "preln_residual_bias",
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
F
feng_shuai 已提交
172
      "roll",
C
ccrrong 已提交
173
      "cast",
174 175 176
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
177
      "remove_padding",
178
      "fill_constant",
179 180
      "sum",
      "shape",
181
      "squeeze2",
W
wenbin 已提交
182 183
      "unsqueeze2",
      "layernorm_shift_partition"};
184 185 186 187 188 189 190
  std::unordered_set<std::string> teller_set{
      "mul",
      "matmul",
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
191 192 193 194 195 196
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
Z
zhupengyang 已提交
197 198
      "exp",
      "log",
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
      "atanh",
      "ceil",
      "floor",
      "erf",
214 215 216 217 218 219 220 221 222
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
223
      "elementwise_sub",
224
      "elementwise_mul",
225
      "elementwise_div",
S
shentanyue 已提交
226
      "elementwise_pow",
C
ccrrong 已提交
227
      "equal",
228 229 230 231 232 233 234 235
      "dropout",
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
L
LielinJiang 已提交
236
      "silu",
237 238 239 240 241 242 243 244
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
245 246
      "top_k",
      "top_k_v2",
247 248 249 250 251
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
252
      "yolo_box_head",
253
      "arg_max",
254 255 256 257 258 259 260 261 262
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
      "reduce_sum",
      "reduce_mean",
      "conv3d",
      "conv3d_transpose",
      "mish",
263
      "bilinear_interp_v2",
264 265 266 267 268 269 270 271 272 273
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
      "skip_layernorm",
      "slice",
F
feng_shuai 已提交
274
      "strided_slice",
275
      "fused_preln_embedding_eltwise_layernorm",
276
      "preln_skip_layernorm",
277 278 279 280 281
      "preln_residual_bias",
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
F
feng_shuai 已提交
282
      "roll",
C
ccrrong 已提交
283
      "cast",
284 285
      "transformer_input_convert",
      "recover_padding",
286
      "remove_padding",
287
      "fill_constant",
288 289
      "sum",
      "shape",
290
      "squeeze2",
291
      "unsqueeze2",
W
wenbin 已提交
292 293
      "fused_token_prune",
      "layernorm_shift_partition"};
294 295
};

C
ccrrong 已提交
296 297
bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
298 299 300
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
301

302
  for (auto& teller : tellers_) {
303 304 305 306 307 308 309 310 311
    std::unordered_set<std::string> act_op_list = {
        "relu",     "relu6", "sigmoid",
        "elu",      "selu",  "softsign",
        "softplus", "stanh", "thresholded_relu",
        "exp",      "log",   "sqrt",
        "abs",      "sin",   "cos",
        "tan",      "tanh",  "sinh",
        "cosh",     "asin",  "acos",
        "atan",     "asinh", "atanh",
L
LielinJiang 已提交
312 313
        "ceil",     "floor", "erf",
        "silu"};
314
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
315
      auto* block = desc.Block();
316 317 318 319 320 321
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
322 323 324 325 326 327 328 329
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 in tensorrt.";
        return false;
      }
330 331 332 333 334 335
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
#endif
J
JingZhuangzhuang 已提交
336 337
    }

338 339 340 341 342 343
    // In static shape mode in TRT, we can't allow that op's input is a
    // 1D-tensor So we filter it here. Some op like elementwise having "Y" too,
    // but that is dealt with in the specified op, here just the common case
    if (!with_dynamic_shape) {
      std::string X_name;
      auto inputs = desc.Inputs();
344
      if (inputs.count("X") && !desc.Input("X").empty()) {
345
        X_name = desc.Input("X")[0];
346
      } else if (inputs.count("Input") && !desc.Input("Input").empty()) {
347 348 349 350 351 352 353 354 355 356 357 358 359
        X_name = desc.Input("Input")[0];
      }
      auto* block = desc.Block();
      if (block) {
        auto* x_var_desc = block->FindVar(X_name);
        // Can't get feed op's TensorDesc
        if (op_type != "feed" && x_var_desc && !x_var_desc->Persistable()) {
          const auto x_shape = x_var_desc->GetShape();
          if (x_shape.size() == 1) return false;
        }
      }
    }

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

376
    if (op_type == "pool2d") {
377 378 379 380 381 382 383
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

384
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
385
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
386 387
      if (paddings.size() > 2) {
        return false;
388
      }
389 390 391 392 393 394 395 396 397 398
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
399 400
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
401
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
402 403 404 405
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
406 407 408 409
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
410
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
411 412 413 414 415
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
416 417
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
418
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
419
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
420
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
421
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
422
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
423 424 425 426 427 428 429 430 431 432 433 434 435
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
436 437 438 439
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
440 441
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

465 466
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
467 468 469 470
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
471
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
472 473 474 475 476 477 478 479 480 481 482 483 484 485
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
486

W
wenbin 已提交
487
// strides > 1 and 'SAME' is only supported by trt7.0 above
488
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
489 490 491 492
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
493
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
494 495
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
496
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
497 498 499 500 501 502
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
503 504 505 506
          }
        }
      }
#endif
507 508
    }

W
wangxinxin08 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    if (op_type == "deformable_conv") {
      if (with_dynamic_shape) {
        VLOG(3) << "Deformable conv trt plugin does not support dynamic shape";
        return false;
      }
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
529
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
530 531 532 533 534 535 536 537
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
538
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
539 540 541 542 543 544 545
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
546
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
547 548 549 550 551 552 553
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

554 555
    if (op_type == "matmul") {
      auto* block = desc.Block();
556 557 558 559 560 561
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

      // not support broadcast
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() != y_shape.size()) {
        VLOG(3)
            << "matmul op not support broadcast, please check inputs'shape. ";
        return false;
      }
      uint64_t dims = 2;
      for (size_t i = 0; i < x_shape.size() - dims; ++i) {
        if (x_shape[i] != y_shape[i] && (x_shape[i] == 1 || y_shape[i] == 1)) {
          VLOG(3) << "matmul op not support broadcast, please check "
                     "inputs'shape[i]. ";
          return false;
        }
      }

582 583 584 585 586
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
587
            VLOG(3)
P
Pei Yang 已提交
588 589
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
590 591 592 593 594
            return false;
          }
        }
      }
    }
W
Wilber 已提交
595 596 597 598 599 600 601 602 603 604 605 606
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }
607 608 609 610 611
    if (op_type == "group_norm") {
      bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
      if (has_attrs == false) return false;
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) return false;
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      if (dtype != 5) {
        VLOG(3) << "Group norm trt plugin only support float32";
        return false;
      }
628 629 630 631
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
632
      }
R
Ruibiao Chen 已提交
633
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
634 635
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
636 637 638 639 640
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
641
        }
642 643
      }
    }
644 645 646
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
647 648
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
649
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
650 651 652 653
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
654 655 656 657 658 659
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
660 661 662
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
663
      if (axis.size() != x_shape.size()) return false;
664
      int dims = x_shape.size();
W
wenbin 已提交
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
684
        return false;
685 686
      }
    }
687
    if (op_type == "flatten2" || op_type == "flatten") {
688 689 690
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
691 692
#if IS_TRT_VERSION_GE(7130)
#else
693
        if (with_dynamic_shape) return false;
694
#endif
R
Ruibiao Chen 已提交
695
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
696 697 698
        if (axis != 1) return false;
      }
    }
699 700
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
701 702
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
730

731
    if (op_type == "gather") {
732 733 734 735 736 737 738 739 740
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
741
        auto* block = desc.Block();
742 743 744 745 746 747
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
748
#if !IS_TRT_VERSION_GE(7000)
749 750 751 752 753 754
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
755
#endif
756
      }
757
    }
Z
zlsh80826 已提交
758

759
    if (op_type == "gather_nd") {
760 761
      if (!with_dynamic_shape) return false;

762
      auto* block = desc.Block();
763 764 765 766 767 768
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
769 770 771 772 773 774 775 776 777 778 779 780 781 782
      auto x_var_name = desc.Input("X")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "gather_nd op Index input data type must be int32";
        return false;
      }

      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
783 784 785 786 787 788
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

789 790 791 792 793 794 795
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
    }

796 797 798 799
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
800 801 802 803 804 805
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
806
      if (!has_attrs) return false;
Z
zlsh80826 已提交
807 808
    }

809 810 811 812 813 814
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

815
    if (op_type == "arg_max") {
816 817 818 819 820 821
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

822
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
823
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
824
                     : -1;
R
Ruibiao Chen 已提交
825 826
      bool flatten = PADDLE_GET_CONST(bool, desc.GetAttr("flatten"));
      int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
827 828 829
      if (axis == 0 || flatten || dtype != 2) return false;
    }

830 831 832
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
      auto data_layout = framework::StringToDataLayout(
R
Ruibiao Chen 已提交
833
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
834
      if (data_layout != framework::DataLayout::kNCHW) return false;
835 836

      auto* block = desc.Block();
837 838 839 840 841 842
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
843 844 845 846 847 848
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
849 850
    }

851
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
852
      auto* block = desc.Block();
853 854 855 856 857 858
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
859 860 861 862 863 864 865 866
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
867 868 869 870
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
871
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
872 873 874 875 876 877 878 879 880 881 882 883
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

884 885 886
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
887
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
888 889
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
890
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
891 892
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
893
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
894 895 896 897 898 899
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

900
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
901 902
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
903 904 905
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
906 907
      if (desc.HasAttr("data_layout")) {
        auto data_layout = framework::StringToDataLayout(
R
Ruibiao Chen 已提交
908
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
909 910 911 912
        if (data_layout != framework::DataLayout::kNCHW &&
            data_layout != framework::DataLayout::kNHWC)
          return false;
      }
913
      auto interp_method =
R
Ruibiao Chen 已提交
914
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
915
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
916 917 918 919 920
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
921 922 923 924
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
925
        }
926 927
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
928 929
          return false;
        }
930
      }
931 932 933 934 935 936 937 938 939
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
940
    }
941

942
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
943 944 945 946 947 948
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
949 950 951 952
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
      auto data_layout = framework::StringToDataLayout(
R
Ruibiao Chen 已提交
953
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
954 955 956 957
      if (data_layout != framework::DataLayout::kNCHW &&
          data_layout != framework::DataLayout::kNHWC)
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
958
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
959
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
960 961 962
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
963
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
964
        if (scale.size() < 2) return false;
965 966 967 968 969 970 971 972
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

973
    if (op_type == "bilinear_interp_v2") {
C
ccrrong 已提交
974 975 976 977 978 979
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
        if (desc.Input("SizeTensor").size() >= 1) {
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
        if (desc.Input("OutSize").size() >= 1) {
          VLOG(3) << "The Paddle-TRT doesn't support the OutSize for op_type "
                  << op_type;
          return false;
        }
      }

      auto data_layout = framework::StringToDataLayout(
R
Ruibiao Chen 已提交
1007
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
1008 1009 1010 1011 1012 1013 1014
      if (data_layout != framework::DataLayout::kNCHW &&
          data_layout != framework::DataLayout::kNHWC) {
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
1015
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
1016 1017 1018 1019 1020 1021
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
1022 1023
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
1035
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
1036 1037 1038 1039 1040 1041 1042
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
1043 1044
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

1084
    if (op_type == "squeeze2") {
1085 1086 1087 1088 1089 1090 1091
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

1092 1093
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1094
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1113
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1129
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1130 1131
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1132 1133 1134 1135 1136 1137 1138 1139 1140
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1141 1142 1143 1144 1145 1146
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
1147 1148 1149 1150 1151 1152
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1163 1164 1165 1166 1167 1168 1169 1170 1171
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
          return false;
        }
      }
1183 1184
      if (!desc.HasAttr("axis")) {
        return false;
1185
      }
R
Ruibiao Chen 已提交
1186
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1187 1188 1189 1190 1191 1192 1193

      if (axis == 0) {
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
                   "TensorRT";
        return false;
      }
      auto* block = desc.Block();
1194 1195 1196 1197 1198 1199
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1200 1201 1202 1203 1204 1205 1206
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1207
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1208 1209 1210
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1211
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1244 1245
        }
      }
1246 1247 1248 1249
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1250
    }
1251

1252 1253 1254 1255 1256 1257 1258 1259
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
1260 1261 1262 1263 1264 1265
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1266 1267 1268
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1269 1270 1271 1272 1273
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 or float16 into trt.
      if (!(dtype == 5 || dtype == 4)) {
        return false;
      }
1274 1275 1276 1277
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "Scale op does not support 1-dimensional input in tensorrt";
        return false;
      }
1278
    }
1279

F
feng_shuai 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1291 1292 1293 1294 1295
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1296 1297 1298 1299 1300 1301 1302 1303
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
        if (desc.Input("SequenceLength").size()) {
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1355
    if (op_type == "slice") {
1356 1357
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1358
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1359 1360 1361
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1362 1363
            return false;
          }
1364 1365 1366
        }
      }

1367
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
1368 1369 1370
          !desc.HasAttr("ends")) {
        VLOG(3) << "The necessary attributes of the slice operator axes "
                   "or starts or ends are missing.";
1371 1372 1373
        return false;
      } else {
        std::vector<int> axes =
R
Ruibiao Chen 已提交
1374
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1375
        std::vector<int> starts =
R
Ruibiao Chen 已提交
1376
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
1377
        std::vector<int> ends =
R
Ruibiao Chen 已提交
1378
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
1379

1380
        if (axes.size() != starts.size() || axes.size() != ends.size()) {
1381 1382
          VLOG(3) << "The shape of attributes of the slice operator axes "
                     "or starts or ends are not equal.";
已提交
1383 1384
          return false;
        }
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
      if (slice_inputs.find("StartsTensor") != slice_inputs.end()) {
        if (desc.Input("StartsTensor").size()) {
          return false;
        }
      }
      if (slice_inputs.find("EndsTensor") != slice_inputs.end()) {
        if (desc.Input("EndsTensor").size()) {
          return false;
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
        if (desc.Input("StartsTensorList").size()) {
          return false;
        }
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
        if (desc.Input("EndsTensorList").size()) {
          return false;
        }
      }
1417 1418
    }

1419
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1420 1421
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
        op_type == "elementwise_pow") {
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1440
      auto* block = desc.Block();
1441 1442 1443 1444 1445 1446
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1447 1448 1449 1450
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1451 1452 1453 1454 1455 1456 1457

      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1458 1459
        return false;
      }
1460 1461 1462 1463
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1464
        return false;
1465
      }
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }
1478 1479 1480 1481 1482 1483 1484 1485
    // remember that 1D input in static shape mode is filtered at the beginning
    if (op_type == "sum") {
      return true;
    }

    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }

1498 1499
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1500 1501 1502
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1527

1528
#if IS_TRT_VERSION_LT(7000)
1529
      if (desc.HasAttr("approximate")) {
1530
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1531
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1532
      }
1533
#endif
1534 1535

      auto* block = desc.Block();
1536 1537 1538 1539 1540 1541
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1542

1543 1544 1545 1546 1547 1548 1549
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ValueTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensorList").size()) return false;
      }
R
Ruibiao Chen 已提交
1589
      int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
1590 1591 1592 1593 1594 1595
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    if (op_type == "instance_norm") {
      if (with_dynamic_shape) {
        VLOG(3) << "trt instance_norm op does not support dynamic shape ";
        return false;
      }
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1637 1638
    }

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
R
Ruibiao Chen 已提交
1654 1655
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1656 1657 1658 1659
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1660 1661
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1662 1663 1664 1665 1666 1667
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1668 1669 1670 1671 1672 1673 1674 1675
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1676
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1689 1690
    }

1691 1692
    if (op_type == "swish") {
      auto* block = desc.Block();
1693 1694 1695 1696 1697 1698
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1699 1700 1701 1702 1703 1704 1705 1706 1707
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1721 1722

      auto* block = desc.Block();
1723 1724 1725 1726 1727 1728
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1729 1730 1731 1732 1733 1734 1735 1736 1737
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1738 1739 1740
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt "
                   "with static shape.";
1741 1742 1743
        return false;
      }

W
Wilber 已提交
1744 1745 1746 1747 1748 1749 1750
#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1751 1752
    }

W
wangxinxin08 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "mish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1784 1785 1786 1787 1788 1789 1790
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1791 1792 1793 1794
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1795
                                     "aligned"};
1796 1797 1798 1799 1800
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1801
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1802 1803 1804
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1805
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1806 1807 1808
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1809
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1810 1811 1812 1813 1814 1815 1816 1817
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1818 1819 1820
    }

    if (op_type == "shuffle_channel") {
1821
#if !IS_TRT_VERSION_GE(8000)
1822 1823
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1824 1825
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1826 1827
        return false;
      }
1828
#endif
1829 1830 1831 1832 1833 1834 1835 1836 1837
    }

    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1849 1850 1851 1852 1853
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
1870
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
1880
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
1895
        return false;
F
feng_shuai 已提交
1896
#endif
1897
      }
1898 1899
    }

1900
    if (op_type == "fc") {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      // y'shapes == 2
      auto fc_inputs = desc.Inputs();
      std::string fc_y = "";
      if (fc_inputs.find("Y") != fc_inputs.end()) {
        fc_y = "Y";
      } else if (fc_inputs.find("W") != fc_inputs.end()) {
        fc_y = "W";
      } else {
        VLOG(3) << " input_y(fc_op) must be Y or W ";
        return false;
      }

      //  There is currently no input: Y(weight) more than two dimensions
      /*
      auto* y_var_desc = block->FindVar(desc.Input(fc_y)[0]);
      const auto y_shape = y_var_desc->GetShape();
      if (y_shape.size() != 2) {
        VLOG(3)
1927 1928
            << " input_y(fc_op)'shapes must be 2, but input_y(fc_op)'shapes =
      "
1929 1930 1931 1932 1933 1934
            << y_shape.size();
        return false;
      }
      // y_num_col_dims ==1
      if (desc.HasAttr("y_num_col_dims")) {
        int y_num_col_dims =
R
Ruibiao Chen 已提交
1935
            PADDLE_GET_CONST(int, desc.GetAttr("y_num_col_dims"));
1936 1937 1938 1939 1940 1941 1942
        if (y_num_col_dims != 1) {
          VLOG(3) << " fc_op'y_num_col_dims must be 1, but y_num_col_dims = "
                  << y_num_col_dims;
          return false;
        }
      }
      */
1943 1944
      int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
R
Ruibiao Chen 已提交
1945
              ? PADDLE_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
1946
              : (desc.HasAttr("in_num_col_dims")
R
Ruibiao Chen 已提交
1947
                     ? PADDLE_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
1948 1949
                     : 1);
      if (x_num_col_dims < 1) {
1950 1951 1952
        VLOG(3) << "fc_op expects x_num_col_dims >= 1, "
                   "but x_num_col_dims = "
                << x_num_col_dims;
1953 1954 1955
        return false;
      }
    }
1956

W
Wangzheee 已提交
1957
    if (op_type == "reshape" || op_type == "reshape2") {
1958 1959 1960
      if (with_dynamic_shape) {
        return true;
      }
W
Wangzheee 已提交
1961 1962
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
1963 1964
      }
      // Paddle-TRT does not support the input tensors: Shape and ShapeTensor
1965
      auto reshape_inputs = desc.Inputs();
1966 1967 1968 1969 1970 1971 1972 1973 1974
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
1975
      }
W
Wilber 已提交
1976
      std::vector<int> shape =
R
Ruibiao Chen 已提交
1977
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
1978
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
1990 1991 1992 1993
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
1994 1995 1996 1997
          if (input_num == shape_num) {
            return true;
          }
        }
1998
        return false;
X
xiaoxiaohehe001 已提交
1999
      }
W
Wangzheee 已提交
2000
    }
2001

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
2017 2018 2019 2020 2021 2022
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2023 2024 2025 2026 2027 2028 2029 2030 2031
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "clip op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

W
wenbin 已提交
2032
    if (op_type == "reduce_sum" || op_type == "reduce_mean") {
2033 2034 2035 2036 2037 2038 2039
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2040 2041
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2042 2043
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2044
                   "reduce_all)";
2045 2046 2047 2048 2049 2050 2051 2052
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2053 2054
        return false;
      }
W
wenbin 已提交
2055 2056

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2057
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2058
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2059
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2060
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2061
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2062
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2063
        for (auto x : dim) {
2064
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2065
        }
2066

2067
      } else {
R
Ruibiao Chen 已提交
2068 2069
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2070 2071
          return false;
      }
2072 2073 2074 2075 2076 2077 2078

      auto dtype = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(7000)
      if (dtype != framework::proto::VarType::INT32 &&
          dtype != framework::proto::VarType::FP32) {
        VLOG(3) << "reduce op input data type must be int32 or float32";
        return false;
W
wenbin 已提交
2079
      }
2080 2081
#else
      if (dtype != framework::proto::VarType::FP32) {
2082 2083
        VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                   "< 7.0";
2084 2085 2086
        return false;
      }
#endif
2087
    }
W
wenbin 已提交
2088 2089 2090
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2091 2092 2093
      auto tile_inputs = desc.Inputs();
      if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
        if (desc.Input("repeat_times_tensor").size() >= 1) {
W
wenbin 已提交
2094
          return false;
2095 2096 2097 2098
        }
      }
      if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
        if (desc.Input("RepeatTimes").size() >= 1) {
W
wenbin 已提交
2099
          return false;
2100
        }
W
wenbin 已提交
2101 2102 2103 2104 2105
      }
      if (with_dynamic_shape) return false;
      if (!with_dynamic_shape && !desc.HasAttr("repeat_times")) return false;
    }
#endif
2106

2107 2108 2109 2110 2111
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2112 2113
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2114
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2115 2116 2117 2118 2119 2120
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2121
#endif
2122 2123
    }

W
wenbin 已提交
2124 2125 2126
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2127
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2143
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2165
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

2183 2184 2185 2186
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
2187 2188 2189
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
2190 2191 2192 2193 2194
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
2195 2196 2197
        if (x_shape.size() == 1) {
          VLOG(3) << "Hard sigmoid does not support 1-dimensional input in "
                     "tensorrt";
2198 2199 2200 2201 2202
          return false;
        }
      }
    }

C
ccrrong 已提交
2203
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2204 2205 2206 2207
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2208 2209 2210 2211 2212 2213
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2214 2215
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
C
ccrrong 已提交
2216 2217 2218 2219
      if ((in_dtype == 4 || in_dtype == 5) && out_dtype == 4) {
        VLOG(3) << "unsupport data type conversion";
        return false;
      }
2220 2221 2222 2223 2224
      if (in_dtype == 0) {
        VLOG(3) << "do not support input data type as bool now";
        return false;
      }
      if (!((in_dtype == 5 || in_dtype == 4 || in_dtype == 2) &&
C
ccrrong 已提交
2225
            (out_dtype == 5 || out_dtype == 4 || out_dtype == 2))) {
2226 2227
        VLOG(3) << "only valid conversions are: "
                   "(kFLOAT | kHALF | kINT32) -> (kFLOAT | kHALF | kINT32)";
C
ccrrong 已提交
2228 2229 2230 2231
        return false;
      }
    }

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
    if (op_type == "top_k_v2" || op_type == "top_k") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "top_k/top_k_v2 does not support 1-dimensional input in "
                   "tensorrt";
        return false;
      }
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2243
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2244 2245 2246 2247 2248 2249 2250
        if (axis == 0) {
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
                     "tensorrt";
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2251
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2252 2253 2254 2255 2256 2257 2258 2259
        if (!sorted) {
          VLOG(3) << "top_k_v2 does not support results not sorted in "
                     "tensorrt";
          return false;
        }
      }
    }

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

C
ccrrong 已提交
2270 2271 2272 2273 2274
    if (op_type == "equal") {
#if !IS_TRT_VERSION_GE(8000)
      VLOG(3) << "compare is not supported when TensorRT < 8.0";
      return false;
#else
R
Ruibiao Chen 已提交
2275
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2289 2290 2291 2292 2293 2294 2295 2296
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

2297
    if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
2298
  }
W
wenbin 已提交
2299

2300 2301
  return false;
}
2302

2303 2304 2305 2306
OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle