test_dot_op.py 9.0 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
R
ronnywang 已提交
17
import paddle.fluid.core as core
L
liuwei1031 已提交
18 19
import unittest
import numpy as np
20 21
from op_test import OpTest
from paddle.fluid import Program, program_guard
L
liuwei1031 已提交
22 23 24 25 26


class DotOp(OpTest):
    def setUp(self):
        self.op_type = "dot"
27
        self.python_api = paddle.dot
L
liuwei1031 已提交
28 29 30 31 32
        self.init_dtype()
        self.init_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
33
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
L
liuwei1031 已提交
34 35 36 37 38
        }
        self.outputs = {'Out': self.out}
        self.attrs = {}

    def test_check_output(self):
39
        self.check_output(check_eager=True)
L
liuwei1031 已提交
40 41

    def test_check_grad_normal(self):
R
ronnywang 已提交
42 43 44 45
        if core.is_compiled_with_rocm():
            self.check_grad(
                ['X', 'Y'],
                'Out',
46
                user_defined_grads=[self.inputs['Y'], self.inputs['X']],
47 48
                check_eager=True,
            )
R
ronnywang 已提交
49
        else:
50
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
L
liuwei1031 已提交
51 52

    def test_check_grad_ingore_x(self):
R
ronnywang 已提交
53
        if core.is_compiled_with_rocm():
54 55 56 57 58 59 60
            self.check_grad(
                ['Y'],
                'Out',
                no_grad_set=set("X"),
                user_defined_grads=[self.inputs['X']],
                check_eager=True,
            )
R
ronnywang 已提交
61
        else:
62 63 64
            self.check_grad(
                ['Y'], 'Out', no_grad_set=set("X"), check_eager=True
            )
L
liuwei1031 已提交
65 66

    def test_check_grad_ingore_y(self):
R
ronnywang 已提交
67
        if core.is_compiled_with_rocm():
68 69 70 71 72 73 74
            self.check_grad(
                ['X'],
                'Out',
                no_grad_set=set('Y'),
                user_defined_grads=[self.inputs['Y']],
                check_eager=True,
            )
R
ronnywang 已提交
75
        else:
76 77 78
            self.check_grad(
                ['X'], 'Out', no_grad_set=set('Y'), check_eager=True
            )
L
liuwei1031 已提交
79 80 81 82 83 84 85 86 87 88 89 90

    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [121]).astype(self.dtype)
        self.y = np.random.uniform(1, 3, [121]).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_dtype(self):
        self.dtype = np.float64


class DotOpBatch(DotOp):
    def init_input_output(self):
91 92 93 94 95 96 97 98
        self.x = (
            np.random.uniform(0.1, 1, [132])
            .astype(self.dtype)
            .reshape([11, 12])
        )
        self.y = (
            np.random.uniform(1, 3, [132]).astype(self.dtype).reshape([11, 12])
        )
L
liuwei1031 已提交
99 100
        self.out = np.sum(self.x * self.y, axis=1).reshape([11, 1])

R
ronnywang 已提交
101 102 103 104 105 106 107 108 109
    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))

L
liuwei1031 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

class TestDotOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x1 = fluid.layers.data(name='x1', shape=[120], dtype="uint8")
            y1 = fluid.layers.data(name='y1', shape=[120], dtype="uint8")
            self.assertRaises(Exception, paddle.dot, x1, y1)

            x2 = fluid.layers.data(name='x2', shape=[2, 3], dtype="float32")
            y2 = fluid.layers.data(name='y2', shape=[2, 3], dtype="float32")
            self.assertRaises(Exception, paddle.dot, x2, y2)

            x3 = fluid.layers.data(name='x3', shape=[3], dtype="float32")
            y3 = fluid.layers.data(name='y3', shape=[2, 3], dtype="float32")
            self.assertRaises(Exception, paddle.dot, x2, y3)


class TestDygraph(unittest.TestCase):
    def test_dygraph(self):
        with fluid.dygraph.guard():
            x1 = fluid.dygraph.to_variable(np.array([1, 3]).astype(np.float32))
            y1 = fluid.dygraph.to_variable(np.array([2, 5]).astype(np.float32))
135 136 137
            np.testing.assert_allclose(
                paddle.dot(x1, y1).numpy(), np.array([17]), rtol=1e-05
            )
L
liuwei1031 已提交
138 139

            x1 = fluid.dygraph.to_variable(
140 141
                np.array([[1, 3], [3, 5]]).astype(np.float32)
            )
L
liuwei1031 已提交
142
            y1 = fluid.dygraph.to_variable(
143 144
                np.array([[2, 5], [6, 8]]).astype(np.float32)
            )
145
            np.testing.assert_array_equal(
146 147
                paddle.dot(x1, y1).numpy(), np.array([[17], [58]])
            )
L
liuwei1031 已提交
148 149


C
chentianyu03 已提交
150 151 152
class TestComplexDotOp(OpTest):
    def setUp(self):
        self.op_type = "dot"
153
        self.python_api = paddle.dot
C
chentianyu03 已提交
154 155 156 157 158 159
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
160
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
C
chentianyu03 已提交
161 162 163 164 165 166 167 168
        }
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(100).astype(
169 170
            self.dtype
        ) + 1j * np.random.random(100).astype(self.dtype)
C
chentianyu03 已提交
171
        self.y = np.random.random(100).astype(
172 173
            self.dtype
        ) + 1j * np.random.random(100).astype(self.dtype)
C
chentianyu03 已提交
174 175 176
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
177
        self.grad_out = np.ones(1, self.dtype) + 1j * np.ones(1, self.dtype)
C
chentianyu03 已提交
178 179 180 181
        self.grad_x = self.grad_out * np.conj(self.y)
        self.grad_y = self.grad_out * np.conj(self.x)

    def test_check_output(self):
182
        self.check_output(check_eager=True)
C
chentianyu03 已提交
183 184

    def test_check_grad_normal(self):
185 186 187 188 189 190 191
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
C
chentianyu03 已提交
192 193

    def test_check_grad_ingore_x(self):
194 195 196 197 198 199 200 201
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
C
chentianyu03 已提交
202 203

    def test_check_grad_ingore_y(self):
204 205 206 207 208 209 210 211
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
C
chentianyu03 已提交
212 213 214 215 216 217 218 219 220 221 222


class TestComplexDotOp2D(OpTest):
    def setUp(self):
        self.op_type = "dot"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
223
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
C
chentianyu03 已提交
224 225 226 227 228 229 230
        }
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
231 232 233 234 235 236
        self.x = np.random.random((2, 100)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 100)).astype(self.dtype)
        self.y = np.random.random((2, 100)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 100)).astype(self.dtype)
C
chentianyu03 已提交
237 238 239
        self.out = np.diag(np.dot(self.x, self.y.T)).reshape(-1, 1)

    def init_grad_input_output(self):
240 241 242
        self.grad_out = np.ones((2, 1), self.dtype) + 1j * np.ones(
            (2, 1), self.dtype
        )
C
chentianyu03 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255
        self.grad_x = self._get_grad(self.grad_out, self.y)
        self.grad_y = self._get_grad(self.grad_out, self.x)

    def _get_grad(self, grad_out, input):
        grad = np.empty((0, input.shape[1]))
        for i in range(grad_out.shape[0]):
            grad = np.append(grad, [grad_out[i] * np.conj(input[i])], axis=0)
        return grad

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
256 257 258 259 260 261
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
262 263

    def test_check_grad_ingore_x(self):
264 265 266 267 268 269 270
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
271 272

    def test_check_grad_ingore_y(self):
273 274 275 276 277 278 279
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
280 281


L
liuwei1031 已提交
282
if __name__ == '__main__':
C
chentianyu03 已提交
283
    paddle.enable_static()
L
liuwei1031 已提交
284
    unittest.main()