test_dot_op.py 9.3 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
R
ronnywang 已提交
17
import paddle.fluid.core as core
L
liuwei1031 已提交
18 19 20 21 22 23 24 25
import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
from paddle.fluid.op import Operator
from paddle.fluid import compiler, Program, program_guard


class DotOp(OpTest):
26

L
liuwei1031 已提交
27 28
    def setUp(self):
        self.op_type = "dot"
29
        self.python_api = paddle.dot
L
liuwei1031 已提交
30 31 32 33 34 35 36 37 38 39 40
        self.init_dtype()
        self.init_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.outputs = {'Out': self.out}
        self.attrs = {}

    def test_check_output(self):
41
        self.check_output(check_eager=True)
L
liuwei1031 已提交
42 43

    def test_check_grad_normal(self):
R
ronnywang 已提交
44 45 46 47
        if core.is_compiled_with_rocm():
            self.check_grad(
                ['X', 'Y'],
                'Out',
48 49
                user_defined_grads=[self.inputs['Y'], self.inputs['X']],
                check_eager=True)
R
ronnywang 已提交
50
        else:
51
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
L
liuwei1031 已提交
52 53

    def test_check_grad_ingore_x(self):
R
ronnywang 已提交
54
        if core.is_compiled_with_rocm():
55 56 57
            self.check_grad(['Y'],
                            'Out',
                            no_grad_set=set("X"),
58 59
                            user_defined_grads=[self.inputs['X']],
                            check_eager=True)
R
ronnywang 已提交
60
        else:
61 62 63 64
            self.check_grad(['Y'],
                            'Out',
                            no_grad_set=set("X"),
                            check_eager=True)
L
liuwei1031 已提交
65 66

    def test_check_grad_ingore_y(self):
R
ronnywang 已提交
67
        if core.is_compiled_with_rocm():
68 69 70
            self.check_grad(['X'],
                            'Out',
                            no_grad_set=set('Y'),
71 72
                            user_defined_grads=[self.inputs['Y']],
                            check_eager=True)
R
ronnywang 已提交
73
        else:
74 75 76 77
            self.check_grad(['X'],
                            'Out',
                            no_grad_set=set('Y'),
                            check_eager=True)
L
liuwei1031 已提交
78 79 80 81 82 83 84 85 86 87 88

    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [121]).astype(self.dtype)
        self.y = np.random.uniform(1, 3, [121]).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_dtype(self):
        self.dtype = np.float64


class DotOpBatch(DotOp):
89

L
liuwei1031 已提交
90
    def init_input_output(self):
91 92 93 94
        self.x = np.random.uniform(0.1, 1,
                                   [132]).astype(self.dtype).reshape([11, 12])
        self.y = np.random.uniform(1, 3,
                                   [132]).astype(self.dtype).reshape([11, 12])
L
liuwei1031 已提交
95 96
        self.out = np.sum(self.x * self.y, axis=1).reshape([11, 1])

R
ronnywang 已提交
97 98 99 100 101 102 103 104 105
    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))

L
liuwei1031 已提交
106 107

class TestDotOpError(unittest.TestCase):
108

L
liuwei1031 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def test_errors(self):
        with program_guard(Program(), Program()):

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x1 = fluid.layers.data(name='x1', shape=[120], dtype="uint8")
            y1 = fluid.layers.data(name='y1', shape=[120], dtype="uint8")
            self.assertRaises(Exception, paddle.dot, x1, y1)

            x2 = fluid.layers.data(name='x2', shape=[2, 3], dtype="float32")
            y2 = fluid.layers.data(name='y2', shape=[2, 3], dtype="float32")
            self.assertRaises(Exception, paddle.dot, x2, y2)

            x3 = fluid.layers.data(name='x3', shape=[3], dtype="float32")
            y3 = fluid.layers.data(name='y3', shape=[2, 3], dtype="float32")
            self.assertRaises(Exception, paddle.dot, x2, y3)


class TestDygraph(unittest.TestCase):
128

L
liuwei1031 已提交
129 130 131 132
    def test_dygraph(self):
        with fluid.dygraph.guard():
            x1 = fluid.dygraph.to_variable(np.array([1, 3]).astype(np.float32))
            y1 = fluid.dygraph.to_variable(np.array([2, 5]).astype(np.float32))
133 134 135
            np.testing.assert_allclose(paddle.dot(x1, y1).numpy(),
                                       np.array([17]),
                                       rtol=1e-05)
L
liuwei1031 已提交
136 137 138 139 140

            x1 = fluid.dygraph.to_variable(
                np.array([[1, 3], [3, 5]]).astype(np.float32))
            y1 = fluid.dygraph.to_variable(
                np.array([[2, 5], [6, 8]]).astype(np.float32))
141 142
            np.testing.assert_array_equal(
                paddle.dot(x1, y1).numpy(), np.array([[17], [58]]))
L
liuwei1031 已提交
143 144


C
chentianyu03 已提交
145
class TestComplexDotOp(OpTest):
146

C
chentianyu03 已提交
147 148
    def setUp(self):
        self.op_type = "dot"
149
        self.python_api = paddle.dot
C
chentianyu03 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(100).astype(
            self.dtype) + 1J * np.random.random(100).astype(self.dtype)
        self.y = np.random.random(100).astype(
            self.dtype) + 1J * np.random.random(100).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones(1, self.dtype) + 1J * np.ones(1, self.dtype)
        self.grad_x = self.grad_out * np.conj(self.y)
        self.grad_y = self.grad_out * np.conj(self.x)

    def test_check_output(self):
176
        self.check_output(check_eager=True)
C
chentianyu03 已提交
177 178

    def test_check_grad_normal(self):
179 180 181
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
182 183
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=True)
C
chentianyu03 已提交
184 185

    def test_check_grad_ingore_x(self):
186 187 188 189
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
190 191
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=True)
C
chentianyu03 已提交
192 193

    def test_check_grad_ingore_y(self):
194 195 196 197
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
198 199
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=True)
C
chentianyu03 已提交
200 201 202


class TestComplexDotOp2D(OpTest):
203

C
chentianyu03 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    def setUp(self):
        self.op_type = "dot"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (2, 100)).astype(self.dtype) + 1J * np.random.random(
                (2, 100)).astype(self.dtype)
        self.y = np.random.random(
            (2, 100)).astype(self.dtype) + 1J * np.random.random(
                (2, 100)).astype(self.dtype)
        self.out = np.diag(np.dot(self.x, self.y.T)).reshape(-1, 1)

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 1), self.dtype) + 1J * np.ones(
            (2, 1), self.dtype)
        self.grad_x = self._get_grad(self.grad_out, self.y)
        self.grad_y = self._get_grad(self.grad_out, self.x)

    def _get_grad(self, grad_out, input):
        grad = np.empty((0, input.shape[1]))
        for i in range(grad_out.shape[0]):
            grad = np.append(grad, [grad_out[i] * np.conj(input[i])], axis=0)
        return grad

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
244 245 246 247
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
248 249

    def test_check_grad_ingore_x(self):
250 251 252 253 254
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
255 256

    def test_check_grad_ingore_y(self):
257 258 259 260 261
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
262 263


L
liuwei1031 已提交
264
if __name__ == '__main__':
C
chentianyu03 已提交
265
    paddle.enable_static()
L
liuwei1031 已提交
266
    unittest.main()