test_dot_op.py 9.2 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
R
ronnywang 已提交
17
import paddle.fluid.core as core
L
liuwei1031 已提交
18 19
import unittest
import numpy as np
20 21
from op_test import OpTest
from paddle.fluid import Program, program_guard
L
liuwei1031 已提交
22 23 24


class DotOp(OpTest):
25

L
liuwei1031 已提交
26 27
    def setUp(self):
        self.op_type = "dot"
28
        self.python_api = paddle.dot
L
liuwei1031 已提交
29 30 31 32 33 34 35 36 37 38 39
        self.init_dtype()
        self.init_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.outputs = {'Out': self.out}
        self.attrs = {}

    def test_check_output(self):
40
        self.check_output(check_eager=True)
L
liuwei1031 已提交
41 42

    def test_check_grad_normal(self):
R
ronnywang 已提交
43 44 45 46
        if core.is_compiled_with_rocm():
            self.check_grad(
                ['X', 'Y'],
                'Out',
47 48
                user_defined_grads=[self.inputs['Y'], self.inputs['X']],
                check_eager=True)
R
ronnywang 已提交
49
        else:
50
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
L
liuwei1031 已提交
51 52

    def test_check_grad_ingore_x(self):
R
ronnywang 已提交
53
        if core.is_compiled_with_rocm():
54 55 56
            self.check_grad(['Y'],
                            'Out',
                            no_grad_set=set("X"),
57 58
                            user_defined_grads=[self.inputs['X']],
                            check_eager=True)
R
ronnywang 已提交
59
        else:
60 61 62 63
            self.check_grad(['Y'],
                            'Out',
                            no_grad_set=set("X"),
                            check_eager=True)
L
liuwei1031 已提交
64 65

    def test_check_grad_ingore_y(self):
R
ronnywang 已提交
66
        if core.is_compiled_with_rocm():
67 68 69
            self.check_grad(['X'],
                            'Out',
                            no_grad_set=set('Y'),
70 71
                            user_defined_grads=[self.inputs['Y']],
                            check_eager=True)
R
ronnywang 已提交
72
        else:
73 74 75 76
            self.check_grad(['X'],
                            'Out',
                            no_grad_set=set('Y'),
                            check_eager=True)
L
liuwei1031 已提交
77 78 79 80 81 82 83 84 85 86 87

    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [121]).astype(self.dtype)
        self.y = np.random.uniform(1, 3, [121]).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_dtype(self):
        self.dtype = np.float64


class DotOpBatch(DotOp):
88

L
liuwei1031 已提交
89
    def init_input_output(self):
90 91 92 93
        self.x = np.random.uniform(0.1, 1,
                                   [132]).astype(self.dtype).reshape([11, 12])
        self.y = np.random.uniform(1, 3,
                                   [132]).astype(self.dtype).reshape([11, 12])
L
liuwei1031 已提交
94 95
        self.out = np.sum(self.x * self.y, axis=1).reshape([11, 1])

R
ronnywang 已提交
96 97 98 99 100 101 102 103 104
    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))

L
liuwei1031 已提交
105 106

class TestDotOpError(unittest.TestCase):
107

L
liuwei1031 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    def test_errors(self):
        with program_guard(Program(), Program()):

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x1 = fluid.layers.data(name='x1', shape=[120], dtype="uint8")
            y1 = fluid.layers.data(name='y1', shape=[120], dtype="uint8")
            self.assertRaises(Exception, paddle.dot, x1, y1)

            x2 = fluid.layers.data(name='x2', shape=[2, 3], dtype="float32")
            y2 = fluid.layers.data(name='y2', shape=[2, 3], dtype="float32")
            self.assertRaises(Exception, paddle.dot, x2, y2)

            x3 = fluid.layers.data(name='x3', shape=[3], dtype="float32")
            y3 = fluid.layers.data(name='y3', shape=[2, 3], dtype="float32")
            self.assertRaises(Exception, paddle.dot, x2, y3)


class TestDygraph(unittest.TestCase):
127

L
liuwei1031 已提交
128 129 130 131
    def test_dygraph(self):
        with fluid.dygraph.guard():
            x1 = fluid.dygraph.to_variable(np.array([1, 3]).astype(np.float32))
            y1 = fluid.dygraph.to_variable(np.array([2, 5]).astype(np.float32))
132 133 134
            np.testing.assert_allclose(paddle.dot(x1, y1).numpy(),
                                       np.array([17]),
                                       rtol=1e-05)
L
liuwei1031 已提交
135 136 137 138 139

            x1 = fluid.dygraph.to_variable(
                np.array([[1, 3], [3, 5]]).astype(np.float32))
            y1 = fluid.dygraph.to_variable(
                np.array([[2, 5], [6, 8]]).astype(np.float32))
140 141
            np.testing.assert_array_equal(
                paddle.dot(x1, y1).numpy(), np.array([[17], [58]]))
L
liuwei1031 已提交
142 143


C
chentianyu03 已提交
144
class TestComplexDotOp(OpTest):
145

C
chentianyu03 已提交
146 147
    def setUp(self):
        self.op_type = "dot"
148
        self.python_api = paddle.dot
C
chentianyu03 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(100).astype(
            self.dtype) + 1J * np.random.random(100).astype(self.dtype)
        self.y = np.random.random(100).astype(
            self.dtype) + 1J * np.random.random(100).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones(1, self.dtype) + 1J * np.ones(1, self.dtype)
        self.grad_x = self.grad_out * np.conj(self.y)
        self.grad_y = self.grad_out * np.conj(self.x)

    def test_check_output(self):
175
        self.check_output(check_eager=True)
C
chentianyu03 已提交
176 177

    def test_check_grad_normal(self):
178 179 180
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
181 182
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=True)
C
chentianyu03 已提交
183 184

    def test_check_grad_ingore_x(self):
185 186 187 188
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
189 190
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=True)
C
chentianyu03 已提交
191 192

    def test_check_grad_ingore_y(self):
193 194 195 196
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
197 198
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=True)
C
chentianyu03 已提交
199 200 201


class TestComplexDotOp2D(OpTest):
202

C
chentianyu03 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    def setUp(self):
        self.op_type = "dot"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (2, 100)).astype(self.dtype) + 1J * np.random.random(
                (2, 100)).astype(self.dtype)
        self.y = np.random.random(
            (2, 100)).astype(self.dtype) + 1J * np.random.random(
                (2, 100)).astype(self.dtype)
        self.out = np.diag(np.dot(self.x, self.y.T)).reshape(-1, 1)

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 1), self.dtype) + 1J * np.ones(
            (2, 1), self.dtype)
        self.grad_x = self._get_grad(self.grad_out, self.y)
        self.grad_y = self._get_grad(self.grad_out, self.x)

    def _get_grad(self, grad_out, input):
        grad = np.empty((0, input.shape[1]))
        for i in range(grad_out.shape[0]):
            grad = np.append(grad, [grad_out[i] * np.conj(input[i])], axis=0)
        return grad

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
243 244 245 246
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
247 248

    def test_check_grad_ingore_x(self):
249 250 251 252 253
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
254 255

    def test_check_grad_ingore_y(self):
256 257 258 259 260
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
261 262


L
liuwei1031 已提交
263
if __name__ == '__main__':
C
chentianyu03 已提交
264
    paddle.enable_static()
L
liuwei1031 已提交
265
    unittest.main()