test_dot_op.py 8.8 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle
import paddle.fluid as fluid
R
ronnywang 已提交
18
import paddle.fluid.core as core
L
liuwei1031 已提交
19 20 21 22 23 24 25 26
import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
from paddle.fluid.op import Operator
from paddle.fluid import compiler, Program, program_guard


class DotOp(OpTest):
27

L
liuwei1031 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    def setUp(self):
        self.op_type = "dot"
        self.init_dtype()
        self.init_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.outputs = {'Out': self.out}
        self.attrs = {}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
R
ronnywang 已提交
44 45 46 47 48 49 50
        if core.is_compiled_with_rocm():
            self.check_grad(
                ['X', 'Y'],
                'Out',
                user_defined_grads=[self.inputs['Y'], self.inputs['X']])
        else:
            self.check_grad(['X', 'Y'], 'Out')
L
liuwei1031 已提交
51 52

    def test_check_grad_ingore_x(self):
R
ronnywang 已提交
53
        if core.is_compiled_with_rocm():
54 55 56 57
            self.check_grad(['Y'],
                            'Out',
                            no_grad_set=set("X"),
                            user_defined_grads=[self.inputs['X']])
R
ronnywang 已提交
58 59
        else:
            self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
L
liuwei1031 已提交
60 61

    def test_check_grad_ingore_y(self):
R
ronnywang 已提交
62
        if core.is_compiled_with_rocm():
63 64 65 66
            self.check_grad(['X'],
                            'Out',
                            no_grad_set=set('Y'),
                            user_defined_grads=[self.inputs['Y']])
R
ronnywang 已提交
67 68
        else:
            self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
L
liuwei1031 已提交
69 70 71 72 73 74 75 76 77 78 79

    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [121]).astype(self.dtype)
        self.y = np.random.uniform(1, 3, [121]).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_dtype(self):
        self.dtype = np.float64


class DotOpBatch(DotOp):
80

L
liuwei1031 已提交
81
    def init_input_output(self):
82 83 84 85
        self.x = np.random.uniform(0.1, 1,
                                   [132]).astype(self.dtype).reshape([11, 12])
        self.y = np.random.uniform(1, 3,
                                   [132]).astype(self.dtype).reshape([11, 12])
L
liuwei1031 已提交
86 87
        self.out = np.sum(self.x * self.y, axis=1).reshape([11, 1])

R
ronnywang 已提交
88 89 90 91 92 93 94 95 96
    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))

L
liuwei1031 已提交
97 98

class TestDotOpError(unittest.TestCase):
99

L
liuwei1031 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    def test_errors(self):
        with program_guard(Program(), Program()):

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x1 = fluid.layers.data(name='x1', shape=[120], dtype="uint8")
            y1 = fluid.layers.data(name='y1', shape=[120], dtype="uint8")
            self.assertRaises(Exception, paddle.dot, x1, y1)

            x2 = fluid.layers.data(name='x2', shape=[2, 3], dtype="float32")
            y2 = fluid.layers.data(name='y2', shape=[2, 3], dtype="float32")
            self.assertRaises(Exception, paddle.dot, x2, y2)

            x3 = fluid.layers.data(name='x3', shape=[3], dtype="float32")
            y3 = fluid.layers.data(name='y3', shape=[2, 3], dtype="float32")
            self.assertRaises(Exception, paddle.dot, x2, y3)


class TestDygraph(unittest.TestCase):
119

L
liuwei1031 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def test_dygraph(self):
        with fluid.dygraph.guard():
            x1 = fluid.dygraph.to_variable(np.array([1, 3]).astype(np.float32))
            y1 = fluid.dygraph.to_variable(np.array([2, 5]).astype(np.float32))
            self.assertTrue(
                np.allclose(paddle.dot(x1, y1).numpy(), np.array([17])))

            x1 = fluid.dygraph.to_variable(
                np.array([[1, 3], [3, 5]]).astype(np.float32))
            y1 = fluid.dygraph.to_variable(
                np.array([[2, 5], [6, 8]]).astype(np.float32))
            self.assertTrue(
                np.array_equal(
                    paddle.dot(x1, y1).numpy(), np.array([[17], [58]])))


C
chentianyu03 已提交
136
class TestComplexDotOp(OpTest):
137

C
chentianyu03 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    def setUp(self):
        self.op_type = "dot"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(100).astype(
            self.dtype) + 1J * np.random.random(100).astype(self.dtype)
        self.y = np.random.random(100).astype(
            self.dtype) + 1J * np.random.random(100).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones(1, self.dtype) + 1J * np.ones(1, self.dtype)
        self.grad_x = self.grad_out * np.conj(self.y)
        self.grad_y = self.grad_out * np.conj(self.x)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
170 171 172 173
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
174 175

    def test_check_grad_ingore_x(self):
176 177 178 179 180
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
181 182

    def test_check_grad_ingore_y(self):
183 184 185 186 187
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
188 189 190


class TestComplexDotOp2D(OpTest):
191

C
chentianyu03 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    def setUp(self):
        self.op_type = "dot"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (2, 100)).astype(self.dtype) + 1J * np.random.random(
                (2, 100)).astype(self.dtype)
        self.y = np.random.random(
            (2, 100)).astype(self.dtype) + 1J * np.random.random(
                (2, 100)).astype(self.dtype)
        self.out = np.diag(np.dot(self.x, self.y.T)).reshape(-1, 1)

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 1), self.dtype) + 1J * np.ones(
            (2, 1), self.dtype)
        self.grad_x = self._get_grad(self.grad_out, self.y)
        self.grad_y = self._get_grad(self.grad_out, self.x)

    def _get_grad(self, grad_out, input):
        grad = np.empty((0, input.shape[1]))
        for i in range(grad_out.shape[0]):
            grad = np.append(grad, [grad_out[i] * np.conj(input[i])], axis=0)
        return grad

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
233 234 235 236
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
237 238

    def test_check_grad_ingore_x(self):
239 240 241 242 243
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
244 245

    def test_check_grad_ingore_y(self):
246 247 248 249 250
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
251 252


L
liuwei1031 已提交
253
if __name__ == '__main__':
C
chentianyu03 已提交
254
    paddle.enable_static()
L
liuwei1031 已提交
255
    unittest.main()