pybind.cc 20.7 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
QI JUN 已提交
19
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/lod_tensor_array.h"
27
#include "paddle/framework/prune.h"
Q
qijun 已提交
28
#include "paddle/framework/selected_rows.h"
29
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
30
#include "paddle/operators/cond_op.h"
31
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
32
#include "paddle/operators/net_op.h"
Q
qijun 已提交
33
#include "paddle/platform/enforce.h"
Q
qijun 已提交
34
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
35
#include "paddle/pybind/exception.h"
Q
qijun 已提交
36
#include "paddle/pybind/pybind.h"
37
#include "paddle/pybind/tensor_py.h"
38
#include "paddle/string/to_string.h"
39

D
Dong Zhihong 已提交
40 41
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
42
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
43 44
#endif

45
namespace paddle {
46
namespace pybind {
47 48 49
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
50 51
}

Q
QI JUN 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
std::once_flag gflags_init_flag;

// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
  std::call_once(gflags_init_flag, [&]() {
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(1) << "Init commandline: " << line;
  });
}

Q
qijun 已提交
70
bool IsCompileGPU() {
71
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
72 73 74 75 76 77
  return false;
#else
  return true;
#endif
}

78
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
79
  py::module m("core", "C++ core of PaddlePaddle");
80

81 82 83 84
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
85 86
  BindException(m);

87 88 89
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
90
      .def("get_dims",
91
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
92
      .def("set_dims",
Q
qijun 已提交
93
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
94
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
95 96
           })
      .def("alloc_float",
Y
Yu Yang 已提交
97
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
98
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
99
           })
Q
qijun 已提交
100
      .def("alloc_float",
Y
Yu Yang 已提交
101
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
102
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
103 104
           })
      .def("alloc_int",
Y
Yu Yang 已提交
105
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
106
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
107
           })
Q
qijun 已提交
108
      .def("alloc_int",
Y
Yu Yang 已提交
109
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
110
             self.mutable_data<int>(place);
Q
qijun 已提交
111
           })
Y
Yu Yang 已提交
112 113
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
114
      .def("set", PyCPUTensorSetFromArray<double>)
115
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
116
      .def("set", PyCPUTensorSetFromArray<bool>)
117
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
118 119
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
120
      .def("set", PyCUDATensorSetFromArray<double>)
121
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
122
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
123
#endif
124
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
125 126 127 128 129
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
130

131
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
132 133
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
134 135 136
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
137
#ifndef PADDLE_WITH_CUDA
138
            new (&instance) LoDTensor(lod);
139
#else
Y
Yu Yang 已提交
140
             LoD new_lod;
141 142
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
143
             new (&instance) LoDTensor(new_lod);
144
#endif
145
          })
Y
Yu Yang 已提交
146
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
147
      .def("set_lod",
148
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
149
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
150
             self.set_lod(lod);
151
#else
Y
Yu Yang 已提交
152
             LoD new_lod;
153 154 155 156
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
157
           })
158
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
159
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
160
        return self.lod();
161 162 163 164 165
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
166
               [](Vector<size_t> item) ->
167 168 169 170 171 172 173 174
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
175 176
      });

Q
qijun 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
190 191 192 193 194 195 196 197 198
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
199 200 201 202 203 204 205 206 207 208 209
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
210

211
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
212 213 214

All parameter, weight, gradient are variables in Paddle.
)DOC")
215
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
216
      .def("set_int",
217 218
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
219 220 221 222 223 224 225
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
226
      .def("get_tensor",
227 228
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
229 230
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
231 232 233
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
234 235 236 237 238
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
239 240 241
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
242 243 244 245 246 247 248
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
249
      .def("get_net",
D
dongzhihong 已提交
250 251
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
252
           },
Y
Yu Yang 已提交
253
           py::return_value_policy::reference);
254

255
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
256
      .def("var",
257
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
258
             return self.Var(name);
Y
Yu Yang 已提交
259
           },
260
           py::return_value_policy::reference)
261
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
262
      .def(py::init<>())
263
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
264
           py::return_value_policy::reference)
Y
Yu Yang 已提交
265
      .def("drop_kids", &Scope::DropKids);
266

Y
Yu Yang 已提交
267 268
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
269 270
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
271 272 273 274 275 276 277 278 279 280
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
281 282
    return ret_values;
  });
283 284 285 286
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
287
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
288 289 290 291 292
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
293 294 295
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
296 297
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
298
  // clang-format off
Y
Yu Yang 已提交
299
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
300 301
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
302
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
303 304 305 306 307
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
308
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
309
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
310
#else
Q
qijun 已提交
311
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
312
#endif
Q
qijun 已提交
313
                  });
D
Dong Zhihong 已提交
314
// clang-format on
Q
qijun 已提交
315

D
Dong Zhihong 已提交
316 317 318
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
319 320 321
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
322

323 324 325
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
326

Y
Yu Yang 已提交
327 328 329 330 331 332 333 334 335 336 337
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
338 339 340 341 342 343 344 345 346
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
347
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
348 349 350 351 352 353
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
354
      .def("run",
355
           [](OperatorBase &self, const Scope &scope,
356 357 358 359
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
360 361 362 363 364 365 366
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
367 368
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
369
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
370
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
371 372 373 374
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
375

Y
Yu Yang 已提交
376 377 378 379 380 381 382
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
383 384
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
385 386 387 388
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

440 441 442 443 444 445 446 447 448 449
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
450
                    auto rnn_op = OpRegistry::CreateOp(desc);
451 452 453
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
454
      .def("set_step_unit",
455
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
456
               -> void { self.rnn.SetStepUnit(net.Clone()); })
457 458
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
459
               -> const TensorArray & { return self.rnn.state(name); })
460 461
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
462
               -> const TensorArray & { return self.rnn.step_input(name); })
463 464
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
465
               -> const TensorArray & { return self.rnn.step_output(name); });
466

Z
cond op  
zchen0211 已提交
467 468 469 470 471 472 473 474 475 476
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
477
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
478 479 480 481 482 483 484 485 486 487 488
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
489 490
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
491
      .def("run", &Executor::Run);
F
fengjiayi 已提交
492

493
  m.def("unique_integer", UniqueIntegerGenerator);
Q
QI JUN 已提交
494
  m.def("init_gflags", InitGflags);
495

Q
qijun 已提交
496
  m.def("is_compile_gpu", IsCompileGPU);
497
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
498
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
499

F
fengjiayi 已提交
500 501 502 503
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
504

Y
Yu Yang 已提交
505 506 507 508 509 510 511 512 513
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
531
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
532
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
533
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
Dong Zhihong 已提交
534
#endif
Y
Yu Yang 已提交
535

536
  return m.ptr();
L
Luo Tao 已提交
537
}
538
}  // namespace pybind
539
}  // namespace paddle