pybind.cc 18.8 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
18
#include "paddle/framework/executor.h"
Q
qijun 已提交
19
#include "paddle/framework/feed_fetch_method.h"
20
#include "paddle/framework/framework.pb.h"
D
dangqingqing 已提交
21
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
22
#include "paddle/framework/selected_rows.h"
23
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
24
#include "paddle/operators/cond_op.h"
25
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
26
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
27
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
28
#include "paddle/platform/enforce.h"
Q
qijun 已提交
29
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
30
#include "paddle/pybind/exception.h"
Q
qijun 已提交
31
#include "paddle/pybind/pybind.h"
32
#include "paddle/pybind/tensor_py.h"
33
#include "paddle/string/to_string.h"
34

35
namespace paddle {
36
namespace pybind {
37 38 39 40 41
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
42
bool IsCompileGPU() {
43
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
44 45 46 47 48 49
  return false;
#else
  return true;
#endif
}

50
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
51
  py::module m("core", "C++ core of PaddlePaddle");
52

53 54 55 56
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
57 58
  BindException(m);

59 60 61
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
62
      .def("get_dims",
63
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
64
      .def("set_dims",
Q
qijun 已提交
65
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
66
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
67 68
           })
      .def("alloc_float",
Y
Yu Yang 已提交
69
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
70
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
71
           })
Q
qijun 已提交
72
      .def("alloc_float",
Y
Yu Yang 已提交
73
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
74
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
75 76
           })
      .def("alloc_int",
Y
Yu Yang 已提交
77
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
78
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
79
           })
Q
qijun 已提交
80
      .def("alloc_int",
Y
Yu Yang 已提交
81
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
82
             self.mutable_data<int>(place);
Q
qijun 已提交
83
           })
Y
Yu Yang 已提交
84 85
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
86
      .def("set", PyCPUTensorSetFromArray<double>)
87
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
88 89
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
90
      .def("set", PyCUDATensorSetFromArray<double>)
Q
qijun 已提交
91
#endif
92
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
93 94 95 96 97
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
98

99
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
100 101
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
102 103 104
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
105
#ifndef PADDLE_WITH_CUDA
106
            new (&instance) LoDTensor(lod);
107
#else
Y
Yu Yang 已提交
108
             LoD new_lod;
109 110
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
111
             new (&instance) LoDTensor(new_lod);
112
#endif
113
          })
Y
Yu Yang 已提交
114
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
115
      .def("set_lod",
116
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
117
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
118
             self.set_lod(lod);
119
#else
Y
Yu Yang 已提交
120
             LoD new_lod;
121 122 123 124
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
125
           })
126
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
127
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
128
        return self.lod();
129 130 131 132 133
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
134
               [](Vector<size_t> item) ->
135 136 137 138 139 140 141 142
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
143 144
      });

Q
qijun 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
158 159 160 161 162 163 164 165 166
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
167 168 169 170 171 172 173 174 175 176 177
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
178

179
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
180 181 182

All parameter, weight, gradient are variables in Paddle.
)DOC")
183
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
184
      .def("set_int",
185 186
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
187 188 189 190 191 192 193
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
194
      .def("get_tensor",
195 196
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
197 198
           },
           py::return_value_policy::reference)
Q
qijun 已提交
199 200 201 202 203
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
204
      .def("get_net",
D
dongzhihong 已提交
205 206
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
207
           },
Y
Yu Yang 已提交
208
           py::return_value_policy::reference);
209

210
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
211
      .def("var",
212
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
213
             return self.Var(name);
Y
Yu Yang 已提交
214
           },
215
           py::return_value_policy::reference)
216
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
217
      .def(py::init<>())
218
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
219
           py::return_value_policy::reference)
Y
Yu Yang 已提交
220 221
      .def("drop_kids", &Scope::DropKids)
      .def_static("global_scope", &GetGlobalScope);
222

Y
Yu Yang 已提交
223 224
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
225 226
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
227 228 229 230

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
231
      std::string str;
Y
Yu Yang 已提交
232
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
233
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
234 235
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
236 237
    return ret_values;
  });
238 239 240
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
241 242
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
243
  // clang-format off
Y
Yu Yang 已提交
244
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
245 246
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
247
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
248 249 250 251 252
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
253
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
254
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
255
#else
Q
qijun 已提交
256
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
257
#endif
Q
qijun 已提交
258
                  });
Q
qijun 已提交
259
  // clang-format on
Q
qijun 已提交
260

261 262 263
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
264

265 266 267
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
268

Y
Yu Yang 已提交
269 270 271 272 273 274 275 276 277 278 279
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
280 281 282 283 284 285 286 287 288
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
289
                    return OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
290 291 292 293 294 295
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
296
      .def("run",
297
           [](OperatorBase &self, const Scope &scope,
298 299 300 301
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
302 303 304 305 306 307 308
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
309 310
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
311
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
312
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
313 314 315 316
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
317

Y
Yu Yang 已提交
318 319 320 321 322 323 324
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
325 326
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
327 328 329 330
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
382
  // recurrent_op
Y
Yu Yang 已提交
383 384 385 386 387 388 389 390 391 392
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
393
            auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
394 395
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
396 397 398 399
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
400

401 402 403 404 405 406 407 408 409 410
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
411
                    auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
      .def("set_stepnet",
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
               -> void { self.SetStepNet(net.Clone()); })
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.state(name); })
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_input(name); })
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_output(name); });

Z
cond op  
zchen0211 已提交
428 429 430 431 432 433 434 435 436 437
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
438
                    auto cond_op = OpRegistry::CreateOp(desc, nullptr);
Z
cond op  
zchen0211 已提交
439 440 441 442 443 444 445 446 447 448 449
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
450 451 452
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
      .def("run",
Y
Yu Yang 已提交
453
           [](Executor &self, ProgramDescBind *program_bind, int block_id) {
F
fengjiayi 已提交
454
             framework::Scope &global_scope = GetGlobalScope();
Y
Yu Yang 已提交
455
             self.Run(*program_bind->Proto(), &global_scope, block_id);
F
fengjiayi 已提交
456 457
           });

458 459
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
460
  m.def("is_compile_gpu", IsCompileGPU);
Y
Yu Yang 已提交
461
  //! FIXME: it is no need to `set_xxx_float/double/int`
Q
qijun 已提交
462 463 464 465
  m.def("set_feed_variable_float", framework::SetFeedVariable<float>);
  m.def("set_feed_variable_double", framework::SetFeedVariable<double>);
  m.def("set_feed_variable_int", framework::SetFeedVariable<int>);
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
466

F
fengjiayi 已提交
467 468 469 470
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
471

472
  return m.ptr();
L
Luo Tao 已提交
473
}
474
}  // namespace pybind
475
}  // namespace paddle