pybind.cc 20.3 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
QI JUN 已提交
19
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
D
dangqingqing 已提交
24
#include "paddle/framework/lod_tensor.h"
25
#include "paddle/framework/prune.h"
Q
qijun 已提交
26
#include "paddle/framework/selected_rows.h"
27
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
28
#include "paddle/operators/cond_op.h"
29
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
30
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
31
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
32
#include "paddle/platform/enforce.h"
Q
qijun 已提交
33
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
34
#include "paddle/pybind/exception.h"
Q
qijun 已提交
35
#include "paddle/pybind/pybind.h"
36
#include "paddle/pybind/tensor_py.h"
37
#include "paddle/string/to_string.h"
38

D
Dong Zhihong 已提交
39 40
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
41
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
42 43
#endif

44
namespace paddle {
45
namespace pybind {
46 47 48
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
49 50
}

Q
QI JUN 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
std::once_flag gflags_init_flag;

// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
  std::call_once(gflags_init_flag, [&]() {
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(1) << "Init commandline: " << line;
  });
}

Q
qijun 已提交
69
bool IsCompileGPU() {
70
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
71 72 73 74 75 76
  return false;
#else
  return true;
#endif
}

77
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
78
  py::module m("core", "C++ core of PaddlePaddle");
79

80 81 82 83
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
84 85
  BindException(m);

86 87 88
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
89
      .def("get_dims",
90
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
91
      .def("set_dims",
Q
qijun 已提交
92
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
93
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
94 95
           })
      .def("alloc_float",
Y
Yu Yang 已提交
96
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
97
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
98
           })
Q
qijun 已提交
99
      .def("alloc_float",
Y
Yu Yang 已提交
100
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
102 103
           })
      .def("alloc_int",
Y
Yu Yang 已提交
104
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
106
           })
Q
qijun 已提交
107
      .def("alloc_int",
Y
Yu Yang 已提交
108
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
109
             self.mutable_data<int>(place);
Q
qijun 已提交
110
           })
Y
Yu Yang 已提交
111 112
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
113
      .def("set", PyCPUTensorSetFromArray<double>)
114
      .def("set", PyCPUTensorSetFromArray<int64_t>)
115
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
116 117
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
118
      .def("set", PyCUDATensorSetFromArray<double>)
119
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Q
qijun 已提交
120
#endif
121
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
122 123 124 125 126
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
127

128
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
129 130
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
131 132 133
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
134
#ifndef PADDLE_WITH_CUDA
135
            new (&instance) LoDTensor(lod);
136
#else
Y
Yu Yang 已提交
137
             LoD new_lod;
138 139
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
140
             new (&instance) LoDTensor(new_lod);
141
#endif
142
          })
Y
Yu Yang 已提交
143
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
144
      .def("set_lod",
145
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
146
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
147
             self.set_lod(lod);
148
#else
Y
Yu Yang 已提交
149
             LoD new_lod;
150 151 152 153
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
154
           })
155
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
156
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
157
        return self.lod();
158 159 160 161 162
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
163
               [](Vector<size_t> item) ->
164 165 166 167 168 169 170 171
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
172 173
      });

Q
qijun 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
187 188 189 190 191 192 193 194 195
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
196 197 198 199 200 201 202 203 204 205 206
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
207

208
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
209 210 211

All parameter, weight, gradient are variables in Paddle.
)DOC")
212
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
213
      .def("set_int",
214 215
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
216 217 218 219 220 221 222
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
223
      .def("get_tensor",
224 225
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
226 227
           },
           py::return_value_policy::reference)
Q
qijun 已提交
228 229 230 231 232
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
233 234 235 236 237 238 239
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
240
      .def("get_net",
D
dongzhihong 已提交
241 242
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
243
           },
Y
Yu Yang 已提交
244
           py::return_value_policy::reference);
245

246
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
247
      .def("var",
248
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
249
             return self.Var(name);
Y
Yu Yang 已提交
250
           },
251
           py::return_value_policy::reference)
252
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
253
      .def(py::init<>())
254
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
255
           py::return_value_policy::reference)
Y
Yu Yang 已提交
256
      .def("drop_kids", &Scope::DropKids);
257

Y
Yu Yang 已提交
258 259
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
260 261
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
262 263 264 265 266 267 268 269 270 271
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
272 273
    return ret_values;
  });
274 275 276 277 278 279 280 281 282 283
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
      prog_with_targets.Block(t[0])->Op(t[1])->MarkAsTarget();
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
284 285 286
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
287 288
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
289
  // clang-format off
Y
Yu Yang 已提交
290
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
291 292
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
293
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
294 295 296 297 298
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
299
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
300
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
301
#else
Q
qijun 已提交
302
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
303
#endif
Q
qijun 已提交
304
                  });
D
Dong Zhihong 已提交
305
// clang-format on
Q
qijun 已提交
306

D
Dong Zhihong 已提交
307 308 309
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
310 311 312
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
313

314 315 316
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
317

Y
Yu Yang 已提交
318 319 320 321 322 323 324 325 326 327 328
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
329 330 331 332 333 334 335 336 337
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
338
                    return OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
339 340 341 342 343 344
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
345
      .def("run",
346
           [](OperatorBase &self, const Scope &scope,
347 348 349 350
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
351 352 353 354 355 356 357
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
358 359
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
360
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
361
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
362 363 364 365
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
366

Y
Yu Yang 已提交
367 368 369 370 371 372 373
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
374 375
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
376 377 378 379
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
380

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
431
  // recurrent_op
Y
Yu Yang 已提交
432 433 434 435 436 437 438 439 440 441
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
442
            auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
443 444
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
445 446 447 448
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
449

450 451 452 453 454 455 456 457 458 459
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
460
                    auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
461 462 463
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
464
      .def("set_step_unit",
465
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
466
               -> void { self.rnn.SetStepUnit(net.Clone()); })
467 468
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
469
               -> const TensorArray & { return self.rnn.state(name); })
470 471
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
472
               -> const TensorArray & { return self.rnn.step_input(name); })
473 474
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
475
               -> const TensorArray & { return self.rnn.step_output(name); });
476

Z
cond op  
zchen0211 已提交
477 478 479 480 481 482 483 484 485 486
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
487
                    auto cond_op = OpRegistry::CreateOp(desc, nullptr);
Z
cond op  
zchen0211 已提交
488 489 490 491 492 493 494 495 496 497 498
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
499 500
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
Y
Yu Yang 已提交
501 502 503 504
      .def("run", [](Executor &self, ProgramDescBind *program_bind,
                     Scope *scope, int block_id) {
        self.Run(*program_bind->Proto(), scope, block_id);
      });
F
fengjiayi 已提交
505

506
  m.def("unique_integer", UniqueIntegerGenerator);
Q
QI JUN 已提交
507
  m.def("init_gflags", InitGflags);
508

Q
qijun 已提交
509
  m.def("is_compile_gpu", IsCompileGPU);
510
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
511
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
512

F
fengjiayi 已提交
513 514 515 516
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
517

Y
Yu Yang 已提交
518
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
519
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
520
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
Dong Zhihong 已提交
521
#endif
Y
Yu Yang 已提交
522

523
  return m.ptr();
L
Luo Tao 已提交
524
}
525
}  // namespace pybind
526
}  // namespace paddle