pybind.cc 19.0 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
18
#include "paddle/framework/executor.h"
Q
qijun 已提交
19
#include "paddle/framework/feed_fetch_method.h"
20
#include "paddle/framework/framework.pb.h"
D
dangqingqing 已提交
21
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
22
#include "paddle/framework/selected_rows.h"
23
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
24
#include "paddle/operators/cond_op.h"
25
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
26
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
27
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
28
#include "paddle/platform/enforce.h"
Q
qijun 已提交
29
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
30
#include "paddle/pybind/exception.h"
Q
qijun 已提交
31
#include "paddle/pybind/pybind.h"
32
#include "paddle/pybind/tensor_py.h"
33
#include "paddle/string/to_string.h"
34

D
Dong Zhihong 已提交
35 36 37 38
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
#endif

39
namespace paddle {
40
namespace pybind {
41 42 43 44 45
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
46
bool IsCompileGPU() {
47
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
48 49 50 51 52 53
  return false;
#else
  return true;
#endif
}

54
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
55
  py::module m("core", "C++ core of PaddlePaddle");
56

57 58 59 60
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
61 62
  BindException(m);

63 64 65
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
66
      .def("get_dims",
67
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
68
      .def("set_dims",
Q
qijun 已提交
69
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
70
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
71 72
           })
      .def("alloc_float",
Y
Yu Yang 已提交
73
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
74
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
75
           })
Q
qijun 已提交
76
      .def("alloc_float",
Y
Yu Yang 已提交
77
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
78
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
79 80
           })
      .def("alloc_int",
Y
Yu Yang 已提交
81
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
82
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
83
           })
Q
qijun 已提交
84
      .def("alloc_int",
Y
Yu Yang 已提交
85
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
86
             self.mutable_data<int>(place);
Q
qijun 已提交
87
           })
Y
Yu Yang 已提交
88 89
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
90
      .def("set", PyCPUTensorSetFromArray<double>)
91
      .def("set", PyCPUTensorSetFromArray<int64_t>)
92
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
93 94
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
95
      .def("set", PyCUDATensorSetFromArray<double>)
96
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Q
qijun 已提交
97
#endif
98
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
99 100 101 102 103
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
104

105
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
106 107
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
108 109 110
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
111
#ifndef PADDLE_WITH_CUDA
112
            new (&instance) LoDTensor(lod);
113
#else
Y
Yu Yang 已提交
114
             LoD new_lod;
115 116
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
117
             new (&instance) LoDTensor(new_lod);
118
#endif
119
          })
Y
Yu Yang 已提交
120
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
121
      .def("set_lod",
122
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
123
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
124
             self.set_lod(lod);
125
#else
Y
Yu Yang 已提交
126
             LoD new_lod;
127 128 129 130
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
131
           })
132
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
133
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
134
        return self.lod();
135 136 137 138 139
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
140
               [](Vector<size_t> item) ->
141 142 143 144 145 146 147 148
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
149 150
      });

Q
qijun 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
164 165 166 167 168 169 170 171 172
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
173 174 175 176 177 178 179 180 181 182 183
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
184

185
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
186 187 188

All parameter, weight, gradient are variables in Paddle.
)DOC")
189
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
190
      .def("set_int",
191 192
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
193 194 195 196 197 198 199
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
200
      .def("get_tensor",
201 202
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
203 204
           },
           py::return_value_policy::reference)
Q
qijun 已提交
205 206 207 208 209
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
210 211 212 213 214 215 216
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
217
      .def("get_net",
D
dongzhihong 已提交
218 219
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
220
           },
Y
Yu Yang 已提交
221
           py::return_value_policy::reference);
222

223
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
224
      .def("var",
225
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
226
             return self.Var(name);
Y
Yu Yang 已提交
227
           },
228
           py::return_value_policy::reference)
229
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
230
      .def(py::init<>())
231
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
232
           py::return_value_policy::reference)
Y
Yu Yang 已提交
233
      .def("drop_kids", &Scope::DropKids);
234

Y
Yu Yang 已提交
235 236
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
237 238
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
239 240 241 242 243 244 245 246 247 248
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
249 250
    return ret_values;
  });
251 252 253
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
254 255
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
256
  // clang-format off
Y
Yu Yang 已提交
257
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
258 259
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
260
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
261 262 263 264 265
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
266
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
267
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
268
#else
Q
qijun 已提交
269
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
270
#endif
Q
qijun 已提交
271
                  });
D
Dong Zhihong 已提交
272
// clang-format on
Q
qijun 已提交
273

D
Dong Zhihong 已提交
274 275 276
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
277 278 279
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
280

281 282 283
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
284

Y
Yu Yang 已提交
285 286 287 288 289 290 291 292 293 294 295
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
296 297 298 299 300 301 302 303 304
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
305
                    return OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
306 307 308 309 310 311
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
312
      .def("run",
313
           [](OperatorBase &self, const Scope &scope,
314 315 316 317
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
318 319 320 321 322 323 324
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
325 326
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
327
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
328
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
329 330 331 332
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
333

Y
Yu Yang 已提交
334 335 336 337 338 339 340
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
341 342
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
343 344 345 346
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
398
  // recurrent_op
Y
Yu Yang 已提交
399 400 401 402 403 404 405 406 407 408
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
409
            auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
410 411
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
412 413 414 415
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
416

417 418 419 420 421 422 423 424 425 426
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
427
                    auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
428 429 430
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
431
      .def("set_step_unit",
432
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
433
               -> void { self.rnn.SetStepUnit(net.Clone()); })
434 435
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
436
               -> const TensorArray & { return self.rnn.state(name); })
437 438
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
439
               -> const TensorArray & { return self.rnn.step_input(name); })
440 441
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
442
               -> const TensorArray & { return self.rnn.step_output(name); });
443

Z
cond op  
zchen0211 已提交
444 445 446 447 448 449 450 451 452 453
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
454
                    auto cond_op = OpRegistry::CreateOp(desc, nullptr);
Z
cond op  
zchen0211 已提交
455 456 457 458 459 460 461 462 463 464 465
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
466 467
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
Y
Yu Yang 已提交
468 469 470 471
      .def("run", [](Executor &self, ProgramDescBind *program_bind,
                     Scope *scope, int block_id) {
        self.Run(*program_bind->Proto(), scope, block_id);
      });
F
fengjiayi 已提交
472

473 474
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
475
  m.def("is_compile_gpu", IsCompileGPU);
476
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
477
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
478

F
fengjiayi 已提交
479 480 481 482
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
483

Y
Yu Yang 已提交
484 485
  m.def("op_support_gpu", OpSupportGPU);

486
  return m.ptr();
L
Luo Tao 已提交
487
}
488
}  // namespace pybind
489
}  // namespace paddle