mul_mkldnn_op.cc 22.3 KB
Newer Older
P
Physher 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
W
wanghuancoder 已提交
19

20
namespace phi {
21
class DenseTensor;
22
}  // namespace phi
23

P
Physher 已提交
24 25 26 27 28 29
namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::DDim;
using framework::ExecutionContext;
30
using framework::LoDTensor;
P
Physher 已提交
31
using framework::Tensor;
32 33 34 35 36

using platform::MatMulV2MKLDNNHandler;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;

37 38 39 40
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::prop_kind;
using dnnl::stream;
P
Physher 已提交
41

42 43 44
constexpr int kMULMKLDNNINT8 = 1;
constexpr int kMULMKLDNNFP32 = 2;

P
Physher 已提交
45 46 47
template <typename XT, typename YT, typename OT>
class MulPrimitiveFactory {
 public:
48
  explicit MulPrimitiveFactory(const dnnl::engine &engine) : engine_(engine) {}
P
Physher 已提交
49

50 51 52 53 54
  inner_product_forward CreateMulPrimitive(const Tensor *x_input,
                                           const Tensor *y_input,
                                           Tensor *output,
                                           const ExecutionContext &ctx) {
    /* check data format and reorder if need */
P
Physher 已提交
55 56 57
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

58 59 60
    // TODO(intel-minghui) : Remove the restriction that only supports Input(Y)
    // as weights
    PADDLE_ENFORCE_EQ(
61 62
        (std::is_same<YT, float>::value),
        true,
63 64 65 66 67 68
        platform::errors::InvalidArgument(
            "Input(Y) must be fp32 data type since only fp32 data type is "
            "supported in the current design of MKLDNN INT8."));

    auto x_matrix = UpdateDataFormat<XT>(x_input, x_num_col_dims, ctx);
    auto y_matrix = UpdateDataFormat<YT>(y_input, y_num_col_dims, ctx);
P
Physher 已提交
69 70 71 72 73 74 75 76

    auto output_dim = output->dims();
    if (output_dim.size() != 2) {
      output->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }

    if (mul_) {
      UpdateDataPointers(ctx, output, &x_matrix);
A
Adam 已提交
77
      Execute();
78
      return *(mul_);
P
Physher 已提交
79 80
    }

81
    auto src_desc = CreateMemDescriptor<XT>(&x_matrix, MKLDNNMemoryFormat::nc);
P
Physher 已提交
82
    x_input_ = CreateMemory<XT>(src_desc, &x_matrix);
83 84 85 86 87 88 89 90 91

    if (is_int8_) {
      const auto trans_y = TransposeInputY(&y_matrix);
      auto scale_y = ctx.Attr<std::vector<float>>("scale_y");
      y_input_ = QuantInputY(trans_y, scale_y);
    } else {
      y_input_ = TransposeInputY(&y_matrix);
    }

92
    auto dst_desc = CreateMemDescriptor<OT>(output, MKLDNNMemoryFormat::any);
P
Physher 已提交
93 94

    mul_ = CreateMulPrimitive(*x_input_, *y_input_, dst_desc, output, ctx);
A
Adam 已提交
95
    Execute();
96 97 98 99 100
    return *(mul_);
  }

 private:
  memory ReorderWithScale(const memory::desc &src_desc,
101 102
                          const memory::desc &dst_desc,
                          void *src_data,
103 104
                          const std::vector<float> &scale) {
    auto mask = scale.size() > 1 ? 1 : 0;
105
    dnnl::primitive_attr attr;
106 107 108 109 110
    attr.set_output_scales(mask, scale);

    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = memory(dst_desc, engine_);

111
    auto reorder_pd = dnnl::reorder::primitive_desc(src_mem, dst_mem, attr);
112

113
    auto reorder = dnnl::reorder(reorder_pd);
114

115
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
116
    {
C
chenjian 已提交
117
      platform::RecordEvent record_reorder(
118 119 120
          "int_reorder",
          platform::TracerEventType::UserDefined,
          2,
C
chenjian 已提交
121
          platform::EventRole::kUniqueOp);
122 123 124
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }
125 126 127 128 129 130 131 132 133 134 135 136

    return dst_mem;
  }

  memory QuantInputY(memory input_y, const std::vector<float> &scale_y) {
    const auto &dims = input_y.get_desc().data.dims;
    auto ndims = input_y.get_desc().data.ndims;
    auto y_dims = std::vector<int64_t>(dims, dims + ndims);

    auto user_y_desc = CreateMemDescriptor<YT>(y_dims, MKLDNNMemoryFormat::oi);
    auto y_desc = CreateMemDescriptor<int8_t>(y_dims, MKLDNNMemoryFormat::oi);

137 138
    return ReorderWithScale(
        user_y_desc, y_desc, input_y.get_data_handle(), scale_y);
139 140
  }

141 142 143
  dnnl::primitive_attr CreateMulAttr(const ExecutionContext &ctx,
                                     bool force_fp32_output) {
    dnnl::primitive_attr mul_attr;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    auto scale_y_data = ctx.Attr<std::vector<float>>("scale_y");
    auto scale_x_data = ctx.Attr<float>("scale_x");
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("scale_out");

    bool is_multi_channel = scale_y_data.size() > 1;
    int count = is_multi_channel ? scale_y_data.size() : 1;
    std::vector<float> output_shift_scale(count);
    for (int i = 0; i < count; i++) {
      if (scale_y_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_x_data * scale_y_data[i]);
    }
    int mul_mask = is_multi_channel ? 1 : 0;
    mul_attr.set_output_scales(mul_mask, output_shift_scale);

    return mul_attr;
  }

  inner_product_forward CreateMulPrimitive(const memory &x_memory,
                                           const memory &y_memory,
                                           const memory::desc &dst_desc,
                                           Tensor *output,
                                           const ExecutionContext &ctx) {
    const auto x_desc = x_memory.get_desc();
    const auto y_desc = y_memory.get_desc();
    inner_product_forward::primitive_desc mul_prim_desc;

    const auto &mul_desc = inner_product_forward::desc(
        prop_kind::forward, x_desc, y_desc, dst_desc);

    if (is_int8_) {
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto mul_attr = CreateMulAttr(ctx, force_fp32_output);
      mul_prim_desc =
          inner_product_forward::primitive_desc(mul_desc, mul_attr, engine_);
    } else {
      mul_prim_desc = inner_product_forward::primitive_desc(mul_desc, engine_);
    }

    output_ = CreateDstMemory(mul_prim_desc, ctx, output);

    return inner_product_forward(mul_prim_desc);
P
Physher 已提交
190 191
  }

A
Adam 已提交
192
  void Execute() {
193
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
194 195 196 197
    (*mul_).execute(astream,
                    {{DNNL_ARG_SRC, *x_input_},
                     {DNNL_ARG_WEIGHTS, *y_input_},
                     {DNNL_ARG_DST, *output_}});
A
Adam 已提交
198 199 200
    astream.wait();
  }

P
Physher 已提交
201
  template <typename T>
202 203
  Tensor UpdateDataFormat(const Tensor *data,
                          int num_col_dims,
P
Physher 已提交
204 205 206
                          const ExecutionContext &ctx) {
    Tensor x_tmp;
    Tensor data_matrix;
207 208
    MKLDNNMemoryFormat src_fmt = data->format();
    MKLDNNMemoryFormat dst_fmt;
P
Physher 已提交
209 210 211
    auto src_mdesc = CreateMemDescriptor<T>(data, src_fmt);

    if ((data->dims().size() == 4 &&
212
         src_fmt != (dst_fmt = MKLDNNMemoryFormat::nchw)) ||
P
Physher 已提交
213
        (data->dims().size() == 5 &&
214
         src_fmt != (dst_fmt = MKLDNNMemoryFormat::ncdhw))) {
P
Physher 已提交
215 216 217
      auto dst_mdesc = CreateMemDescriptor<T>(data, dst_fmt);
      x_tmp.mutable_data<T>(ctx.GetPlace(), data->memory_size());

218 219 220
      Reorder(src_mdesc,
              dst_mdesc,
              to_void_cast<T>(data->data<T>()),
P
Physher 已提交
221 222 223
              to_void_cast<T>(x_tmp.data<T>()));

      x_tmp.Resize(data->dims());
A
Adam 已提交
224
      x_tmp.set_format(platform::GetMKLDNNFormat(dst_mdesc));
P
Physher 已提交
225 226 227 228 229 230 231 232
      data_matrix = framework::ReshapeToMatrix(x_tmp, num_col_dims);
    } else {
      data_matrix = framework::ReshapeToMatrix(*data, num_col_dims);
    }

    return data_matrix;
  }

233 234
  void UpdateDataPointers(const ExecutionContext &ctx,
                          Tensor *out,
P
Physher 已提交
235 236 237 238
                          const Tensor *in) {
    x_input_->set_data_handle(to_void_cast<XT>(in->data<XT>()));
    output_->set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));

A
Adam 已提交
239
    if (out->format() == MKLDNNMemoryFormat::undef) {
A
Adam 已提交
240
      auto output_format = platform::GetMKLDNNFormat(*output_);
241
      out->set_format((MKLDNNMemoryFormat)output_format);
P
Physher 已提交
242 243 244 245 246
    }
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
247 248
      const Tensor *tensor,
      MKLDNNMemoryFormat format,
P
Physher 已提交
249
      memory::data_type type = platform::MKLDNNGetDataType<T>()) {
250
    auto dims = phi::vectorize<int64_t>(tensor->dims());
P
Physher 已提交
251 252 253 254 255
    return platform::MKLDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
256 257
      const std::vector<int64_t> &dims,
      MKLDNNMemoryFormat format,
P
Physher 已提交
258 259 260 261 262 263
      memory::data_type type = platform::MKLDNNGetDataType<T>()) {
    return platform::MKLDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory CreateMemory(const memory::desc &desc, const Tensor *tensor) {
A
Adam 已提交
264
    return memory(desc, engine_, to_void_cast<T>(tensor->data<T>()));
P
Physher 已提交
265 266 267 268
  }

  memory CreateDstMemory(
      const inner_product_forward::primitive_desc &mul_prim_desc,
269 270
      const ExecutionContext &ctx,
      Tensor *output) {
A
Adam 已提交
271 272
    auto dst_desc = mul_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
P
Physher 已提交
273 274

    OT *output_data = output->mutable_data<OT>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
275 276
    output->set_format(paddle::platform::GetMKLDNNFormat(dst_desc));
    return memory(dst_desc, engine_, to_void_cast<OT>(output_data));
P
Physher 已提交
277 278
  }

279 280 281 282
  memory Reorder(const memory::desc &src_desc,
                 const memory::desc &dst_desc,
                 void *src_data,
                 void *dst_data = NULL) {
A
Adam 已提交
283 284 285
    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = dst_data ? memory(dst_desc, engine_, dst_data)
                            : memory(dst_desc, engine_);
P
Physher 已提交
286

287
    auto reorder = dnnl::reorder(src_mem, dst_mem);
A
Adam 已提交
288

289
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
290
    {
C
chenjian 已提交
291
      platform::RecordEvent record_reorder(
292 293 294
          "int_reorder",
          platform::TracerEventType::UserDefined,
          2,
C
chenjian 已提交
295
          platform::EventRole::kUniqueOp);
296 297 298
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }
P
Physher 已提交
299 300 301 302 303

    return dst_mem;
  }

  memory TransposeInputY(const Tensor *input_y) {
304
    auto dims = phi::vectorize<int64_t>(input_y->dims());
P
Physher 已提交
305
    std::swap(dims[0], dims[1]);  // Correct output dimensions
306 307
    auto src_desc = CreateMemDescriptor<YT>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<YT>(dims, MKLDNNMemoryFormat::oi);
P
Physher 已提交
308 309 310
    return Reorder(src_desc, dst_desc, to_void_cast<YT>(input_y->data<YT>()));
  }

311
  const dnnl::engine &engine_;
312 313 314 315
  paddle::optional<memory> x_input_;
  paddle::optional<memory> y_input_;
  paddle::optional<memory> output_;
  paddle::optional<inner_product_forward> mul_;
316 317
  static constexpr bool is_int8_ =
      std::is_same<XT, int8_t>::value || std::is_same<XT, uint8_t>::value;
P
Physher 已提交
318 319 320 321 322
};

/* OT: output data type */
template <typename XT, typename YT, typename OT>
std::shared_ptr<MulPrimitiveFactory<XT, YT, OT>> GetPrimitiveFactory(
323 324 325 326
    const MKLDNNDeviceContext &dev_ctx,
    const ExecutionContext &ctx,
    const Tensor *input_x,
    const Tensor *input_y,
327
    const dnnl::engine &mkldnn_engine) {
328 329 330 331 332 333 334
  std::string key =
      platform::CreateKey(dev_ctx,
                          framework::TransToProtoVarType(input_x->dtype()),
                          phi::vectorize(input_x->dims()),
                          framework::TransToProtoVarType(input_y->dtype()),
                          phi::vectorize(input_y->dims()),
                          ctx.OutputName("Out"));
335
  key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
P
Physher 已提交
336 337 338 339 340 341

  auto prim_creator = std::static_pointer_cast<MulPrimitiveFactory<XT, YT, OT>>(
      dev_ctx.GetBlob(key));

  if (prim_creator == nullptr) {
    prim_creator =
342
        std::make_shared<MulPrimitiveFactory<XT, YT, OT>>(mkldnn_engine);
P
Physher 已提交
343 344 345 346 347 348 349 350 351 352
    dev_ctx.SetBlob(key, prim_creator);
  }

  return prim_creator;
}

template <typename XT, typename YT>
inner_product_forward GetMulPrimitive(const MKLDNNDeviceContext &dev_ctx,
                                      const ExecutionContext &ctx,
                                      const Tensor *input_x,
353 354
                                      const Tensor *input_y,
                                      Tensor *output,
355
                                      const dnnl::engine &mkldnn_engine) {
356
  constexpr bool is_int8 =
P
Physher 已提交
357 358 359
      std::is_same<XT, int8_t>::value || std::is_same<XT, uint8_t>::value;
  bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

360
  if (is_int8 && !force_fp32_output) {
361 362
    return GetPrimitiveFactory<XT, YT, int8_t>(
               dev_ctx, ctx, input_x, input_y, mkldnn_engine)
P
Physher 已提交
363 364 365
        ->CreateMulPrimitive(input_x, input_y, output, ctx);

  } else {
366 367
    return GetPrimitiveFactory<XT, YT, float>(
               dev_ctx, ctx, input_x, input_y, mkldnn_engine)
P
Physher 已提交
368 369 370 371 372 373
        ->CreateMulPrimitive(input_x, input_y, output, ctx);
  }
}

/* XT: input x data type, YT: input y data type */
template <typename XT, typename YT>
374
class MulMKLDNNINT8Kernel : public framework::OpKernel<XT> {
P
Physher 已提交
375 376
 public:
  void Compute(const ExecutionContext &ctx) const override {
377 378
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()),
                      true,
379 380
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Mul must use CPUPlace"));
381
    platform::MKLDNNDeviceContext::tls().log_lib_version();
P
Physher 已提交
382
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
383
    auto &mkldnn_engine = dev_ctx.GetEngine();
P
Physher 已提交
384 385 386 387 388 389 390 391 392 393 394 395

    const Tensor *x = ctx.Input<Tensor>("X");
    const Tensor *y = ctx.Input<Tensor>("Y");
    Tensor *out = ctx.Output<Tensor>("Out");
    auto out_dims = out->dims();

    auto mul = GetMulPrimitive<XT, YT>(dev_ctx, ctx, x, y, out, mkldnn_engine);

    if (out_dims.size() != 2) {
      out->Resize(out_dims);
    }
    out->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
396 397
    out->set_format(platform::MKLDNNFormatForSize(out_dims.size(),
                                                  MKLDNNMemoryFormat::nchw));
P
Physher 已提交
398 399 400
  }
};

401 402 403 404 405 406 407 408 409
template <typename XT, typename YT>
class MulMKLDNNKernel : public framework::OpKernel<XT> {
 public:
  void Compute(const ExecutionContext &ctx) const override { RunKernel(ctx); }

 protected:
  void ExecuteMatMul(const ExecutionContext &ctx,
                     const MKLDNNDeviceContext &dev_ctx,
                     const dnnl::engine &onednn_engine,
410 411 412 413 414 415 416 417
                     const platform::Place &cpu_place,
                     const Tensor *x,
                     const std::vector<int64_t> &x_dims,
                     bool trans_x,
                     const Tensor *y,
                     const std::vector<int64_t> &y_dims,
                     bool trans_y,
                     Tensor *out) const {
418
    static const std::vector<int64_t> vec_placeholder;
419 420 421 422 423 424 425 426 427 428
    MatMulV2MKLDNNHandler<XT, YT, XT> handler(ctx,
                                              onednn_engine,
                                              ctx.GetPlace(),
                                              x_dims,
                                              trans_x,
                                              y_dims,
                                              trans_y,
                                              false,
                                              vec_placeholder,
                                              vec_placeholder);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

    const auto src_memory_p = handler.AcquireSrcMemory(x);
    const auto weights_memory_p = handler.AcquireWeightsMemory(y);
    const auto dst_memory_p = handler.AcquireDstMemory(out);

    auto matmul_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto &astream = MKLDNNDeviceContext::tls().get_stream();
    matmul_p->execute(astream, matmul_args);
    astream.wait();

    out->set_layout(framework::DataLayout::kMKLDNN);
    // plain output formats are enforced inside handler
    out->set_format(platform::MKLDNNFormatForSize(
        out->dims().size(), dnnl::memory::format_tag::nchw));
  }

 private:
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();

    const auto *x = ctx.Input<Tensor>("X");
    const auto *y = ctx.Input<Tensor>("Y");
    auto *out = ctx.Output<Tensor>("Out");

    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

    const Tensor x_matrix = x->dims().size() > 2
                                ? framework::ReshapeToMatrix(*x, x_num_col_dims)
                                : *x;
    const Tensor y_matrix = y->dims().size() > 2
                                ? framework::ReshapeToMatrix(*y, y_num_col_dims)
                                : *y;

    // adding mb dim because MatMulV2 handler needs it
    std::vector<int64_t> y_dims(3, 1);
    std::vector<int64_t> x_dims(3, 1);

    y_dims[1] = y_matrix.dims()[0];
    y_dims[2] = y_matrix.dims()[1];

    x_dims[1] = x_matrix.dims()[0];
    x_dims[2] = x_matrix.dims()[1];

480 481 482 483 484 485 486 487 488 489 490
    ExecuteMatMul(ctx,
                  dev_ctx,
                  onednn_engine,
                  ctx.GetPlace(),
                  &x_matrix,
                  x_dims,
                  false,
                  &y_matrix,
                  y_dims,
                  false,
                  out);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
  }
};

template <typename XT, typename YT>
class MulGradMKLDNNKernel : public MulMKLDNNKernel<XT, YT> {
 public:
  void Compute(const ExecutionContext &ctx) const override { RunKernel(ctx); }

 private:
  template <typename OT = XT>
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();

    const auto *x = ctx.Input<LoDTensor>("X");
    const auto *y = ctx.Input<LoDTensor>("Y");
    const auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto *dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<LoDTensor>(framework::GradVarName("Y"));

    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

    const Tensor x_matrix = x->dims().size() > 2
                                ? framework::ReshapeToMatrix(*x, x_num_col_dims)
                                : static_cast<const Tensor &>(*x);
    const Tensor y_matrix = y->dims().size() > 2
                                ? framework::ReshapeToMatrix(*y, y_num_col_dims)
                                : static_cast<const Tensor &>(*y);

    Tensor dout_matrix = *dout;
523 524
    dout_matrix.Resize({phi::flatten_to_2d(x->dims(), x_num_col_dims)[0],
                        phi::flatten_to_2d(y->dims(), y_num_col_dims)[1]});
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

    // adding mb dim because MatMulV2 handler needs it
    std::vector<int64_t> x_dims(3, 1);
    std::vector<int64_t> y_dims(3, 1);
    std::vector<int64_t> dout_dims(3, 1);

    x_dims[1] = x_matrix.dims()[0];
    x_dims[2] = x_matrix.dims()[1];

    y_dims[1] = y_matrix.dims()[0];
    y_dims[2] = y_matrix.dims()[1];

    dout_dims[1] = dout_matrix.dims()[0];
    dout_dims[2] = dout_matrix.dims()[1];

    if (dx != nullptr) {
      dx->set_lod(x->lod());
542 543 544 545 546 547 548 549 550 551 552
      this->ExecuteMatMul(ctx,
                          dev_ctx,
                          onednn_engine,
                          ctx.GetPlace(),
                          &dout_matrix,
                          dout_dims,
                          false,
                          &y_matrix,
                          y_dims,
                          true,
                          static_cast<Tensor *>(dx));
553 554 555
    }
    if (dy != nullptr) {
      dy->set_lod(y->lod());
556 557 558 559 560 561 562 563 564 565 566
      this->ExecuteMatMul(ctx,
                          dev_ctx,
                          onednn_engine,
                          ctx.GetPlace(),
                          &x_matrix,
                          x_dims,
                          true,
                          &dout_matrix,
                          dout_dims,
                          false,
                          static_cast<Tensor *>(dy));
567 568 569 570
    }
  }
};

P
Physher 已提交
571 572 573 574
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
575 576 577 578 579
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8,
                                    ops::kMULMKLDNNINT8,
580
                                    ops::MulMKLDNNINT8Kernel<uint8_t, float>);
P
Physher 已提交
581

582 583 584 585 586
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8,
                                    ops::kMULMKLDNNINT8,
587 588
                                    ops::MulMKLDNNINT8Kernel<int8_t, float>);

589 590 591 592 593
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
                                    ops::kMULMKLDNNFP32,
594 595 596
                                    ops::MulMKLDNNKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
597 598 599 600 601
    mul,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
    ops::kMULMKLDNNFP32,
602 603
    ops::MulMKLDNNKernel<paddle::platform::bfloat16,
                         paddle::platform::bfloat16>);
P
Physher 已提交
604

605 606 607
REGISTER_OP_KERNEL(mul,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
608 609 610 611 612
                   ops::MulMKLDNNINT8Kernel<uint8_t, float>,
                   ops::MulMKLDNNKernel<paddle::platform::bfloat16,
                                        paddle::platform::bfloat16>,
                   ops::MulMKLDNNKernel<float, float>);

613 614 615 616
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul_grad,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
617 618 619 620
                                    ops::kMULMKLDNNFP32,
                                    ops::MulGradMKLDNNKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
621 622 623 624 625
    mul_grad,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
    ops::kMULMKLDNNFP32,
626 627 628
    ops::MulGradMKLDNNKernel<paddle::platform::bfloat16,
                             paddle::platform::bfloat16>,
    ops::MulGradMKLDNNKernel<float, float>);