mul_mkldnn_op.cc 20.7 KB
Newer Older
P
Physher 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
W
wanghuancoder 已提交
19

20
namespace phi {
21
class DenseTensor;
22
}  // namespace phi
23

W
wanghuancoder 已提交
24
namespace paddle {
25
namespace framework {}  // namespace framework
W
wanghuancoder 已提交
26 27 28 29
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle
P
Physher 已提交
30 31 32 33 34 35 36

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::DDim;
using framework::ExecutionContext;
37
using framework::LoDTensor;
P
Physher 已提交
38
using framework::Tensor;
39 40 41 42 43

using platform::MatMulV2MKLDNNHandler;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;

44 45 46 47
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::prop_kind;
using dnnl::stream;
P
Physher 已提交
48

49 50 51
constexpr int kMULMKLDNNINT8 = 1;
constexpr int kMULMKLDNNFP32 = 2;

P
Physher 已提交
52 53 54
template <typename XT, typename YT, typename OT>
class MulPrimitiveFactory {
 public:
55
  explicit MulPrimitiveFactory(const dnnl::engine &engine) : engine_(engine) {}
P
Physher 已提交
56

57 58 59 60 61
  inner_product_forward CreateMulPrimitive(const Tensor *x_input,
                                           const Tensor *y_input,
                                           Tensor *output,
                                           const ExecutionContext &ctx) {
    /* check data format and reorder if need */
P
Physher 已提交
62 63 64
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

65 66 67 68 69 70 71 72 73 74
    // TODO(intel-minghui) : Remove the restriction that only supports Input(Y)
    // as weights
    PADDLE_ENFORCE_EQ(
        (std::is_same<YT, float>::value), true,
        platform::errors::InvalidArgument(
            "Input(Y) must be fp32 data type since only fp32 data type is "
            "supported in the current design of MKLDNN INT8."));

    auto x_matrix = UpdateDataFormat<XT>(x_input, x_num_col_dims, ctx);
    auto y_matrix = UpdateDataFormat<YT>(y_input, y_num_col_dims, ctx);
P
Physher 已提交
75 76 77 78 79 80 81 82

    auto output_dim = output->dims();
    if (output_dim.size() != 2) {
      output->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }

    if (mul_) {
      UpdateDataPointers(ctx, output, &x_matrix);
A
Adam 已提交
83
      Execute();
84
      return *(mul_);
P
Physher 已提交
85 86
    }

87
    auto src_desc = CreateMemDescriptor<XT>(&x_matrix, MKLDNNMemoryFormat::nc);
P
Physher 已提交
88
    x_input_ = CreateMemory<XT>(src_desc, &x_matrix);
89 90 91 92 93 94 95 96 97

    if (is_int8_) {
      const auto trans_y = TransposeInputY(&y_matrix);
      auto scale_y = ctx.Attr<std::vector<float>>("scale_y");
      y_input_ = QuantInputY(trans_y, scale_y);
    } else {
      y_input_ = TransposeInputY(&y_matrix);
    }

98
    auto dst_desc = CreateMemDescriptor<OT>(output, MKLDNNMemoryFormat::any);
P
Physher 已提交
99 100

    mul_ = CreateMulPrimitive(*x_input_, *y_input_, dst_desc, output, ctx);
A
Adam 已提交
101
    Execute();
102 103 104 105 106 107 108 109
    return *(mul_);
  }

 private:
  memory ReorderWithScale(const memory::desc &src_desc,
                          const memory::desc &dst_desc, void *src_data,
                          const std::vector<float> &scale) {
    auto mask = scale.size() > 1 ? 1 : 0;
110
    dnnl::primitive_attr attr;
111 112 113 114 115
    attr.set_output_scales(mask, scale);

    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = memory(dst_desc, engine_);

116
    auto reorder_pd = dnnl::reorder::primitive_desc(src_mem, dst_mem, attr);
117

118
    auto reorder = dnnl::reorder(reorder_pd);
119

120
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
121
    {
C
chenjian 已提交
122 123 124
      platform::RecordEvent record_reorder(
          "int_reorder", platform::TracerEventType::UserDefined, 2,
          platform::EventRole::kUniqueOp);
125 126 127
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    return dst_mem;
  }

  memory QuantInputY(memory input_y, const std::vector<float> &scale_y) {
    const auto &dims = input_y.get_desc().data.dims;
    auto ndims = input_y.get_desc().data.ndims;
    auto y_dims = std::vector<int64_t>(dims, dims + ndims);

    auto user_y_desc = CreateMemDescriptor<YT>(y_dims, MKLDNNMemoryFormat::oi);
    auto y_desc = CreateMemDescriptor<int8_t>(y_dims, MKLDNNMemoryFormat::oi);

    return ReorderWithScale(user_y_desc, y_desc, input_y.get_data_handle(),
                            scale_y);
  }

144 145 146
  dnnl::primitive_attr CreateMulAttr(const ExecutionContext &ctx,
                                     bool force_fp32_output) {
    dnnl::primitive_attr mul_attr;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    auto scale_y_data = ctx.Attr<std::vector<float>>("scale_y");
    auto scale_x_data = ctx.Attr<float>("scale_x");
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("scale_out");

    bool is_multi_channel = scale_y_data.size() > 1;
    int count = is_multi_channel ? scale_y_data.size() : 1;
    std::vector<float> output_shift_scale(count);
    for (int i = 0; i < count; i++) {
      if (scale_y_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_x_data * scale_y_data[i]);
    }
    int mul_mask = is_multi_channel ? 1 : 0;
    mul_attr.set_output_scales(mul_mask, output_shift_scale);

    return mul_attr;
  }

  inner_product_forward CreateMulPrimitive(const memory &x_memory,
                                           const memory &y_memory,
                                           const memory::desc &dst_desc,
                                           Tensor *output,
                                           const ExecutionContext &ctx) {
    const auto x_desc = x_memory.get_desc();
    const auto y_desc = y_memory.get_desc();
    inner_product_forward::primitive_desc mul_prim_desc;

    const auto &mul_desc = inner_product_forward::desc(
        prop_kind::forward, x_desc, y_desc, dst_desc);

    if (is_int8_) {
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto mul_attr = CreateMulAttr(ctx, force_fp32_output);
      mul_prim_desc =
          inner_product_forward::primitive_desc(mul_desc, mul_attr, engine_);
    } else {
      mul_prim_desc = inner_product_forward::primitive_desc(mul_desc, engine_);
    }

    output_ = CreateDstMemory(mul_prim_desc, ctx, output);

    return inner_product_forward(mul_prim_desc);
P
Physher 已提交
193 194
  }

A
Adam 已提交
195
  void Execute() {
196
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
197 198 199
    (*mul_).execute(astream, {{DNNL_ARG_SRC, *x_input_},
                              {DNNL_ARG_WEIGHTS, *y_input_},
                              {DNNL_ARG_DST, *output_}});
A
Adam 已提交
200 201 202
    astream.wait();
  }

P
Physher 已提交
203 204 205 206 207
  template <typename T>
  Tensor UpdateDataFormat(const Tensor *data, int num_col_dims,
                          const ExecutionContext &ctx) {
    Tensor x_tmp;
    Tensor data_matrix;
208 209
    MKLDNNMemoryFormat src_fmt = data->format();
    MKLDNNMemoryFormat dst_fmt;
P
Physher 已提交
210 211 212
    auto src_mdesc = CreateMemDescriptor<T>(data, src_fmt);

    if ((data->dims().size() == 4 &&
213
         src_fmt != (dst_fmt = MKLDNNMemoryFormat::nchw)) ||
P
Physher 已提交
214
        (data->dims().size() == 5 &&
215
         src_fmt != (dst_fmt = MKLDNNMemoryFormat::ncdhw))) {
P
Physher 已提交
216 217 218 219 220 221 222
      auto dst_mdesc = CreateMemDescriptor<T>(data, dst_fmt);
      x_tmp.mutable_data<T>(ctx.GetPlace(), data->memory_size());

      Reorder(src_mdesc, dst_mdesc, to_void_cast<T>(data->data<T>()),
              to_void_cast<T>(x_tmp.data<T>()));

      x_tmp.Resize(data->dims());
A
Adam 已提交
223
      x_tmp.set_format(platform::GetMKLDNNFormat(dst_mdesc));
P
Physher 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236
      data_matrix = framework::ReshapeToMatrix(x_tmp, num_col_dims);
    } else {
      data_matrix = framework::ReshapeToMatrix(*data, num_col_dims);
    }

    return data_matrix;
  }

  void UpdateDataPointers(const ExecutionContext &ctx, Tensor *out,
                          const Tensor *in) {
    x_input_->set_data_handle(to_void_cast<XT>(in->data<XT>()));
    output_->set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));

A
Adam 已提交
237
    if (out->format() == MKLDNNMemoryFormat::undef) {
A
Adam 已提交
238
      auto output_format = platform::GetMKLDNNFormat(*output_);
239
      out->set_format((MKLDNNMemoryFormat)output_format);
P
Physher 已提交
240 241 242 243 244
    }
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
245
      const Tensor *tensor, MKLDNNMemoryFormat format,
P
Physher 已提交
246
      memory::data_type type = platform::MKLDNNGetDataType<T>()) {
247
    auto dims = phi::vectorize<int64_t>(tensor->dims());
P
Physher 已提交
248 249 250 251 252
    return platform::MKLDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
A
Adam 已提交
253
      const std::vector<int64_t> &dims, MKLDNNMemoryFormat format,
P
Physher 已提交
254 255 256 257 258 259
      memory::data_type type = platform::MKLDNNGetDataType<T>()) {
    return platform::MKLDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory CreateMemory(const memory::desc &desc, const Tensor *tensor) {
A
Adam 已提交
260
    return memory(desc, engine_, to_void_cast<T>(tensor->data<T>()));
P
Physher 已提交
261 262 263 264 265
  }

  memory CreateDstMemory(
      const inner_product_forward::primitive_desc &mul_prim_desc,
      const ExecutionContext &ctx, Tensor *output) {
A
Adam 已提交
266 267
    auto dst_desc = mul_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
P
Physher 已提交
268 269

    OT *output_data = output->mutable_data<OT>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
270 271
    output->set_format(paddle::platform::GetMKLDNNFormat(dst_desc));
    return memory(dst_desc, engine_, to_void_cast<OT>(output_data));
P
Physher 已提交
272 273 274 275
  }

  memory Reorder(const memory::desc &src_desc, const memory::desc &dst_desc,
                 void *src_data, void *dst_data = NULL) {
A
Adam 已提交
276 277 278
    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = dst_data ? memory(dst_desc, engine_, dst_data)
                            : memory(dst_desc, engine_);
P
Physher 已提交
279

280
    auto reorder = dnnl::reorder(src_mem, dst_mem);
A
Adam 已提交
281

282
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
283
    {
C
chenjian 已提交
284 285 286
      platform::RecordEvent record_reorder(
          "int_reorder", platform::TracerEventType::UserDefined, 2,
          platform::EventRole::kUniqueOp);
287 288 289
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }
P
Physher 已提交
290 291 292 293 294

    return dst_mem;
  }

  memory TransposeInputY(const Tensor *input_y) {
295
    auto dims = phi::vectorize<int64_t>(input_y->dims());
P
Physher 已提交
296
    std::swap(dims[0], dims[1]);  // Correct output dimensions
297 298
    auto src_desc = CreateMemDescriptor<YT>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<YT>(dims, MKLDNNMemoryFormat::oi);
P
Physher 已提交
299 300 301
    return Reorder(src_desc, dst_desc, to_void_cast<YT>(input_y->data<YT>()));
  }

302
  const dnnl::engine &engine_;
303 304 305 306
  paddle::optional<memory> x_input_;
  paddle::optional<memory> y_input_;
  paddle::optional<memory> output_;
  paddle::optional<inner_product_forward> mul_;
307 308
  static constexpr bool is_int8_ =
      std::is_same<XT, int8_t>::value || std::is_same<XT, uint8_t>::value;
P
Physher 已提交
309 310 311 312 313 314 315
};

/* OT: output data type */
template <typename XT, typename YT, typename OT>
std::shared_ptr<MulPrimitiveFactory<XT, YT, OT>> GetPrimitiveFactory(
    const MKLDNNDeviceContext &dev_ctx, const ExecutionContext &ctx,
    const Tensor *input_x, const Tensor *input_y,
316
    const dnnl::engine &mkldnn_engine) {
317
  std::string key = platform::CreateKey(
318
      dev_ctx, framework::TransToProtoVarType(input_x->dtype()),
319
      phi::vectorize(input_x->dims()),
320
      framework::TransToProtoVarType(input_y->dtype()),
321
      phi::vectorize(input_y->dims()), ctx.OutputName("Out"));
322
  key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
P
Physher 已提交
323 324 325 326 327 328

  auto prim_creator = std::static_pointer_cast<MulPrimitiveFactory<XT, YT, OT>>(
      dev_ctx.GetBlob(key));

  if (prim_creator == nullptr) {
    prim_creator =
329
        std::make_shared<MulPrimitiveFactory<XT, YT, OT>>(mkldnn_engine);
P
Physher 已提交
330 331 332 333 334 335 336 337 338 339 340
    dev_ctx.SetBlob(key, prim_creator);
  }

  return prim_creator;
}

template <typename XT, typename YT>
inner_product_forward GetMulPrimitive(const MKLDNNDeviceContext &dev_ctx,
                                      const ExecutionContext &ctx,
                                      const Tensor *input_x,
                                      const Tensor *input_y, Tensor *output,
341
                                      const dnnl::engine &mkldnn_engine) {
342
  constexpr bool is_int8 =
P
Physher 已提交
343 344 345
      std::is_same<XT, int8_t>::value || std::is_same<XT, uint8_t>::value;
  bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

346
  if (is_int8 && !force_fp32_output) {
P
Physher 已提交
347
    return GetPrimitiveFactory<XT, YT, int8_t>(dev_ctx, ctx, input_x, input_y,
348
                                               mkldnn_engine)
P
Physher 已提交
349 350 351 352
        ->CreateMulPrimitive(input_x, input_y, output, ctx);

  } else {
    return GetPrimitiveFactory<XT, YT, float>(dev_ctx, ctx, input_x, input_y,
353
                                              mkldnn_engine)
P
Physher 已提交
354 355 356 357 358 359
        ->CreateMulPrimitive(input_x, input_y, output, ctx);
  }
}

/* XT: input x data type, YT: input y data type */
template <typename XT, typename YT>
360
class MulMKLDNNINT8Kernel : public framework::OpKernel<XT> {
P
Physher 已提交
361 362
 public:
  void Compute(const ExecutionContext &ctx) const override {
363 364 365
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Mul must use CPUPlace"));
366
    platform::MKLDNNDeviceContext::tls().log_lib_version();
P
Physher 已提交
367
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
368
    auto &mkldnn_engine = dev_ctx.GetEngine();
P
Physher 已提交
369 370 371 372 373 374 375 376 377 378 379 380

    const Tensor *x = ctx.Input<Tensor>("X");
    const Tensor *y = ctx.Input<Tensor>("Y");
    Tensor *out = ctx.Output<Tensor>("Out");
    auto out_dims = out->dims();

    auto mul = GetMulPrimitive<XT, YT>(dev_ctx, ctx, x, y, out, mkldnn_engine);

    if (out_dims.size() != 2) {
      out->Resize(out_dims);
    }
    out->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
381 382
    out->set_format(platform::MKLDNNFormatForSize(out_dims.size(),
                                                  MKLDNNMemoryFormat::nchw));
P
Physher 已提交
383 384 385
  }
};

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
template <typename XT, typename YT>
class MulMKLDNNKernel : public framework::OpKernel<XT> {
 public:
  void Compute(const ExecutionContext &ctx) const override { RunKernel(ctx); }

 protected:
  void ExecuteMatMul(const ExecutionContext &ctx,
                     const MKLDNNDeviceContext &dev_ctx,
                     const dnnl::engine &onednn_engine,
                     const platform::Place &cpu_place, const Tensor *x,
                     const std::vector<int64_t> &x_dims, bool trans_x,
                     const Tensor *y, const std::vector<int64_t> &y_dims,
                     bool trans_y, Tensor *out) const {
    static const std::vector<int64_t> vec_placeholder;
    MatMulV2MKLDNNHandler<XT> handler(onednn_engine, ctx.GetPlace(), x_dims,
                                      trans_x, y_dims, trans_y, false,
                                      vec_placeholder, vec_placeholder);

    const auto src_memory_p = handler.AcquireSrcMemory(x);
    const auto weights_memory_p = handler.AcquireWeightsMemory(y);
    const auto dst_memory_p = handler.AcquireDstMemory(out);

    auto matmul_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto &astream = MKLDNNDeviceContext::tls().get_stream();
    matmul_p->execute(astream, matmul_args);
    astream.wait();

    out->set_layout(framework::DataLayout::kMKLDNN);
    // plain output formats are enforced inside handler
    out->set_format(platform::MKLDNNFormatForSize(
        out->dims().size(), dnnl::memory::format_tag::nchw));
  }

 private:
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();

    const auto *x = ctx.Input<Tensor>("X");
    const auto *y = ctx.Input<Tensor>("Y");
    auto *out = ctx.Output<Tensor>("Out");

    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

    const Tensor x_matrix = x->dims().size() > 2
                                ? framework::ReshapeToMatrix(*x, x_num_col_dims)
                                : *x;
    const Tensor y_matrix = y->dims().size() > 2
                                ? framework::ReshapeToMatrix(*y, y_num_col_dims)
                                : *y;

    // adding mb dim because MatMulV2 handler needs it
    std::vector<int64_t> y_dims(3, 1);
    std::vector<int64_t> x_dims(3, 1);

    y_dims[1] = y_matrix.dims()[0];
    y_dims[2] = y_matrix.dims()[1];

    x_dims[1] = x_matrix.dims()[0];
    x_dims[2] = x_matrix.dims()[1];

    ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), &x_matrix,
                  x_dims, false, &y_matrix, y_dims, false, out);
  }
};

template <typename XT, typename YT>
class MulGradMKLDNNKernel : public MulMKLDNNKernel<XT, YT> {
 public:
  void Compute(const ExecutionContext &ctx) const override { RunKernel(ctx); }

 private:
  template <typename OT = XT>
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();

    const auto *x = ctx.Input<LoDTensor>("X");
    const auto *y = ctx.Input<LoDTensor>("Y");
    const auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto *dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<LoDTensor>(framework::GradVarName("Y"));

    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

    const Tensor x_matrix = x->dims().size() > 2
                                ? framework::ReshapeToMatrix(*x, x_num_col_dims)
                                : static_cast<const Tensor &>(*x);
    const Tensor y_matrix = y->dims().size() > 2
                                ? framework::ReshapeToMatrix(*y, y_num_col_dims)
                                : static_cast<const Tensor &>(*y);

    Tensor dout_matrix = *dout;
488 489
    dout_matrix.Resize({phi::flatten_to_2d(x->dims(), x_num_col_dims)[0],
                        phi::flatten_to_2d(y->dims(), y_num_col_dims)[1]});
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

    // adding mb dim because MatMulV2 handler needs it
    std::vector<int64_t> x_dims(3, 1);
    std::vector<int64_t> y_dims(3, 1);
    std::vector<int64_t> dout_dims(3, 1);

    x_dims[1] = x_matrix.dims()[0];
    x_dims[2] = x_matrix.dims()[1];

    y_dims[1] = y_matrix.dims()[0];
    y_dims[2] = y_matrix.dims()[1];

    dout_dims[1] = dout_matrix.dims()[0];
    dout_dims[2] = dout_matrix.dims()[1];

    if (dx != nullptr) {
      dx->set_lod(x->lod());
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(),
                          &dout_matrix, dout_dims, false, &y_matrix, y_dims,
                          true, static_cast<Tensor *>(dx));
    }
    if (dy != nullptr) {
      dy->set_lod(y->lod());
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(),
                          &x_matrix, x_dims, true, &dout_matrix, dout_dims,
                          false, static_cast<Tensor *>(dy));
    }
  }
};

P
Physher 已提交
520 521 522 523 524 525
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kMULMKLDNNINT8,
526
                                    ops::MulMKLDNNINT8Kernel<uint8_t, float>);
P
Physher 已提交
527 528 529

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kMULMKLDNNINT8,
530 531 532 533 534 535 536 537 538 539
                                    ops::MulMKLDNNINT8Kernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
                                    FP32, ops::kMULMKLDNNFP32,
                                    ops::MulMKLDNNKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    mul, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kMULMKLDNNFP32,
    ops::MulMKLDNNKernel<paddle::platform::bfloat16,
                         paddle::platform::bfloat16>);
P
Physher 已提交
540 541

REGISTER_OP_KERNEL(mul, MKLDNN, ::paddle::platform::CPUPlace,
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
                   ops::MulMKLDNNINT8Kernel<uint8_t, float>,
                   ops::MulMKLDNNKernel<paddle::platform::bfloat16,
                                        paddle::platform::bfloat16>,
                   ops::MulMKLDNNKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kMULMKLDNNFP32,
                                    ops::MulGradMKLDNNKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    mul_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kMULMKLDNNFP32,
    ops::MulGradMKLDNNKernel<paddle::platform::bfloat16,
                             paddle::platform::bfloat16>,
    ops::MulGradMKLDNNKernel<float, float>);