提交 0caa08ea 编写于 作者: P Physher 提交者: Tao Luo

Add mkldnn int8 mul-op kernel (#17834)

上级 ac81c81b
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle {
namespace operators {
using framework::DataLayout;
using framework::DDim;
using framework::ExecutionContext;
using framework::Tensor;
using mkldnn::inner_product_forward;
using mkldnn::memory;
using mkldnn::prop_kind;
using mkldnn::stream;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
template <typename XT, typename YT, typename OT>
class MulPrimitiveFactory {
public:
explicit MulPrimitiveFactory(const mkldnn::engine &engine)
: engine_(engine) {}
virtual ~MulPrimitiveFactory() {}
virtual inner_product_forward CreateMulPrimitive(
const Tensor *input_x, const Tensor *input_y, Tensor *output,
const ExecutionContext &ctx) {
/* check format and reorder if need */
int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
auto x_matrix = UpdateDataFormat<XT>(input_x, x_num_col_dims, ctx);
auto y_matrix = UpdateDataFormat<YT>(input_y, y_num_col_dims, ctx);
auto output_dim = output->dims();
if (output_dim.size() != 2) {
output->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
}
if (mul_) {
UpdateDataPointers(ctx, output, &x_matrix);
return *mul_;
}
auto src_desc = CreateMemDescriptor<XT>(&x_matrix, memory::format::nc);
x_input_ = CreateMemory<XT>(src_desc, &x_matrix);
y_input_ = TransposeInputY(&y_matrix);
auto dst_desc = CreateMemDescriptor<OT>(output, memory::format::any);
mul_ = CreateMulPrimitive(*x_input_, *y_input_, dst_desc, output, ctx);
return *mul_;
}
protected:
template <typename T>
Tensor UpdateDataFormat(const Tensor *data, int num_col_dims,
const ExecutionContext &ctx) {
Tensor x_tmp;
Tensor data_matrix;
memory::format src_fmt = data->format();
memory::format dst_fmt;
auto src_mdesc = CreateMemDescriptor<T>(data, src_fmt);
if ((data->dims().size() == 4 &&
src_fmt != (dst_fmt = memory::format::nchw)) ||
(data->dims().size() == 5 &&
dst_fmt != (dst_fmt = memory::format::ncdhw))) {
auto dst_mdesc = CreateMemDescriptor<T>(data, dst_fmt);
x_tmp.mutable_data<T>(ctx.GetPlace(), data->memory_size());
Reorder(src_mdesc, dst_mdesc, to_void_cast<T>(data->data<T>()),
to_void_cast<T>(x_tmp.data<T>()));
x_tmp.Resize(data->dims());
x_tmp.set_format((memory::format)dst_mdesc.data.format);
data_matrix = framework::ReshapeToMatrix(x_tmp, num_col_dims);
} else {
data_matrix = framework::ReshapeToMatrix(*data, num_col_dims);
}
return data_matrix;
}
void UpdateDataPointers(const ExecutionContext &ctx, Tensor *out,
const Tensor *in) {
x_input_->set_data_handle(to_void_cast<XT>(in->data<XT>()));
output_->set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));
if (out->format() == memory::format::format_undef) {
auto output_format = output_->get_primitive_desc().desc().data.format;
out->set_format((memory::format)output_format);
}
}
template <typename T>
memory::desc CreateMemDescriptor(
const Tensor *tensor, memory::format format,
memory::data_type type = platform::MKLDNNGetDataType<T>()) {
auto dims = framework::vectorize2int(tensor->dims());
return platform::MKLDNNMemDesc(dims, type, format);
}
template <typename T>
memory::desc CreateMemDescriptor(
const std::vector<int> &dims, memory::format format,
memory::data_type type = platform::MKLDNNGetDataType<T>()) {
return platform::MKLDNNMemDesc(dims, type, format);
}
template <typename T>
memory CreateMemory(const memory::desc &desc, const Tensor *tensor) {
return memory({desc, engine_}, to_void_cast<T>(tensor->data<T>()));
}
memory CreateDstMemory(
const inner_product_forward::primitive_desc &mul_prim_desc,
const ExecutionContext &ctx, Tensor *output) {
auto dst_prim_desc = mul_prim_desc.dst_primitive_desc();
auto buffer_size = dst_prim_desc.get_size();
OT *output_data = output->mutable_data<OT>(ctx.GetPlace(), buffer_size);
output->set_format((memory::format)dst_prim_desc.desc().data.format);
return memory(dst_prim_desc, to_void_cast<OT>(output_data));
}
memory Reorder(const memory::desc &src_desc, const memory::desc &dst_desc,
void *src_data, void *dst_data = NULL) {
auto src_mem = memory({src_desc, engine_}, src_data);
auto dst_mem = dst_data ? memory({dst_desc, engine_}, dst_data)
: memory({dst_desc, engine_});
auto reorder = mkldnn::reorder(src_mem, dst_mem);
stream(stream::kind::eager).submit({reorder}).wait();
return dst_mem;
}
memory TransposeInputY(const Tensor *input_y) {
auto dims = framework::vectorize2int(input_y->dims());
std::swap(dims[0], dims[1]); // Correct output dimensions
auto src_desc = CreateMemDescriptor<YT>(dims, memory::format::io);
auto dst_desc = CreateMemDescriptor<YT>(dims, memory::format::oi);
return Reorder(src_desc, dst_desc, to_void_cast<YT>(input_y->data<YT>()));
}
inner_product_forward CreateMulPrimitive(const memory &x_memory,
const memory &y_memory,
const memory::desc &dst_desc,
Tensor *output,
const ExecutionContext &ctx) {
const auto y_desc = y_memory.get_primitive_desc().desc();
const auto x_desc = x_memory.get_primitive_desc().desc();
auto mul_prim_desc = CreateMulPrimDesc(x_desc, y_desc, dst_desc);
output_ = CreateDstMemory(mul_prim_desc, ctx, output);
return inner_product_forward(mul_prim_desc, x_memory, y_memory, *output_);
}
inner_product_forward::primitive_desc CreateMulPrimDesc(
const memory::desc &x_desc, const memory::desc &y_desc,
const memory::desc &dst_desc) {
auto mul_desc = inner_product_forward::desc(prop_kind::forward, x_desc,
y_desc, dst_desc);
return inner_product_forward::primitive_desc(mul_desc, engine_);
}
protected:
const mkldnn::engine &engine_;
boost::optional<memory> x_input_;
boost::optional<memory> y_input_;
boost::optional<memory> output_;
boost::optional<inner_product_forward> mul_;
}; // namespace operators
template <typename XT, typename YT, typename OT>
class QuantMulPrimitiveFactory : public MulPrimitiveFactory<XT, YT, OT> {
public:
using MulPrimitiveFactory<XT, YT, OT>::MulPrimitiveFactory;
virtual inner_product_forward CreateMulPrimitive(
const Tensor *x_input, const Tensor *y_input, Tensor *output,
const ExecutionContext &ctx) {
/* check data format and reorder if need */
int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
auto scale_y = ctx.Attr<std::vector<float>>("scale_y");
auto x_matrix =
this->template UpdateDataFormat<XT>(x_input, x_num_col_dims, ctx);
auto y_matrix =
this->template UpdateDataFormat<YT>(y_input, y_num_col_dims, ctx);
auto output_dim = output->dims();
if (output_dim.size() != 2) {
output->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
}
if (this->mul_) {
this->UpdateDataPointers(ctx, output, &x_matrix);
return *(this->mul_);
}
auto src_desc =
this->template CreateMemDescriptor<XT>(&x_matrix, memory::format::nc);
this->x_input_ = this->template CreateMemory<XT>(src_desc, &x_matrix);
const auto trans_y = this->TransposeInputY(&y_matrix);
this->y_input_ = QuantInputY(trans_y, scale_y);
auto dst_desc =
this->template CreateMemDescriptor<OT>(output, memory::format::any);
this->mul_ = CreateMulPrimitive(*(this->x_input_), *(this->y_input_),
dst_desc, output, ctx);
return *(this->mul_);
}
memory ReorderWithScale(const memory::desc &src_desc,
const memory::desc &dst_desc, void *src_data,
const std::vector<float> &scale) {
auto mask = scale.size() > 1 ? 1 : 0;
mkldnn::primitive_attr attr;
attr.set_output_scales(mask, scale);
auto src_mem = memory({src_desc, this->engine_}, src_data);
auto dst_mem = memory({dst_desc, this->engine_});
auto reorder_pd = mkldnn::reorder::primitive_desc(
src_mem.get_primitive_desc(), dst_mem.get_primitive_desc(), attr);
auto reorder = mkldnn::reorder(reorder_pd, src_mem, dst_mem);
stream(stream::kind::eager).submit({reorder}).wait();
return dst_mem;
}
memory QuantInputY(memory input_y, const std::vector<float> &scale_y) {
const auto &dims = input_y.get_primitive_desc().desc().data.dims;
auto ndims = input_y.get_primitive_desc().desc().data.ndims;
auto y_dims = std::vector<int>(dims, dims + ndims);
auto user_y_desc =
this->template CreateMemDescriptor<YT>(y_dims, memory::format::oi);
auto y_desc =
this->template CreateMemDescriptor<int8_t>(y_dims, memory::format::oi);
return ReorderWithScale(user_y_desc, y_desc, input_y.get_data_handle(),
scale_y);
}
mkldnn::primitive_attr CreateMulAttr(const ExecutionContext &ctx,
bool force_fp32_output) {
mkldnn::primitive_attr mul_attr;
auto scale_y_data = ctx.Attr<std::vector<float>>("scale_y");
auto scale_x_data = ctx.Attr<float>("scale_x");
auto scale_out_data =
force_fp32_output ? 1.0f : ctx.Attr<float>("scale_out");
bool is_multi_channel = scale_y_data.size() > 1;
int count = is_multi_channel ? scale_y_data.size() : 1;
std::vector<float> output_shift_scale(count);
for (int i = 0; i < count; i++) {
if (scale_y_data[i] == 0.0)
output_shift_scale[i] = scale_out_data;
else
output_shift_scale[i] =
scale_out_data / (scale_x_data * scale_y_data[i]);
}
int mul_mask = is_multi_channel ? 1 : 0;
mul_attr.set_output_scales(mul_mask, output_shift_scale);
return mul_attr;
}
inner_product_forward CreateMulPrimitive(const memory &x_memory,
const memory &y_memory,
const memory::desc &dst_desc,
Tensor *output,
const ExecutionContext &ctx) {
const auto x_desc = x_memory.get_primitive_desc().desc();
const auto y_desc = y_memory.get_primitive_desc().desc();
bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
mkldnn::primitive_attr mul_attr = CreateMulAttr(ctx, force_fp32_output);
auto mul_prim_desc = CreateMulPrimDesc(x_desc, y_desc, dst_desc, mul_attr);
this->output_ = this->CreateDstMemory(mul_prim_desc, ctx, output);
return inner_product_forward(mul_prim_desc, x_memory, y_memory,
*(this->output_));
}
inner_product_forward::primitive_desc CreateMulPrimDesc(
const memory::desc &x_desc, const memory::desc &y_desc,
const memory::desc &dst_desc, const mkldnn::primitive_attr &mul_attr) {
const auto &mul_desc = inner_product_forward::desc(
prop_kind::forward, x_desc, y_desc, dst_desc);
return inner_product_forward::primitive_desc(mul_desc, mul_attr,
this->engine_);
}
};
static std::string GetHash(const Tensor *input_x, const Tensor *input_y,
const std::string &suffix) {
auto dim2str = [](const DDim &operand_dims) {
std::string str = "";
for (int i = 0; i < operand_dims.size(); ++i) {
str += std::to_string(operand_dims[i]) + "-";
}
return str;
};
std::string hash = std::to_string((unsigned)input_x->format()) +
std::to_string((unsigned)input_x->type()) +
dim2str(input_x->dims()) +
std::to_string((unsigned)input_y->format()) +
std::to_string((unsigned)input_y->type()) +
dim2str(input_y->dims()) + suffix;
return hash;
}
/* OT: output data type */
template <typename XT, typename YT, typename OT>
std::shared_ptr<MulPrimitiveFactory<XT, YT, OT>> GetPrimitiveFactory(
const MKLDNNDeviceContext &dev_ctx, const ExecutionContext &ctx,
const Tensor *input_x, const Tensor *input_y,
const mkldnn::engine &mkldnn_engine, bool enable_quant) {
const std::string key = GetHash(input_x, input_y, ctx.op().Output("Out"));
auto prim_creator = std::static_pointer_cast<MulPrimitiveFactory<XT, YT, OT>>(
dev_ctx.GetBlob(key));
if (prim_creator == nullptr) {
prim_creator =
enable_quant
? std::make_shared<QuantMulPrimitiveFactory<XT, YT, OT>>(
mkldnn_engine)
: std::make_shared<MulPrimitiveFactory<XT, YT, OT>>(mkldnn_engine);
dev_ctx.SetBlob(key, prim_creator);
}
return prim_creator;
}
template <typename XT, typename YT>
inner_product_forward GetMulPrimitive(const MKLDNNDeviceContext &dev_ctx,
const ExecutionContext &ctx,
const Tensor *input_x,
const Tensor *input_y, Tensor *output,
const mkldnn::engine &mkldnn_engine) {
bool enable_quant =
std::is_same<XT, int8_t>::value || std::is_same<XT, uint8_t>::value;
bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
if (enable_quant && !force_fp32_output) {
return GetPrimitiveFactory<XT, YT, int8_t>(dev_ctx, ctx, input_x, input_y,
mkldnn_engine, enable_quant)
->CreateMulPrimitive(input_x, input_y, output, ctx);
} else {
return GetPrimitiveFactory<XT, YT, float>(dev_ctx, ctx, input_x, input_y,
mkldnn_engine, enable_quant)
->CreateMulPrimitive(input_x, input_y, output, ctx);
}
}
/* XT: input x data type, YT: input y data type */
template <typename XT, typename YT>
class MulMKLDNNKernel : public framework::OpKernel<XT> {
public:
void Compute(const ExecutionContext &ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto &mkldnn_engine = dev_ctx.GetEngine();
const Tensor *x = ctx.Input<Tensor>("X");
const Tensor *y = ctx.Input<Tensor>("Y");
Tensor *out = ctx.Output<Tensor>("Out");
auto out_dims = out->dims();
auto mul = GetMulPrimitive<XT, YT>(dev_ctx, ctx, x, y, out, mkldnn_engine);
stream(stream::kind::eager).submit({mul}).wait();
if (out_dims.size() != 2) {
out->Resize(out_dims);
}
out->set_layout(DataLayout::kMKLDNN);
out->set_format(out->format());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
U8, ops::kMULMKLDNNINT8,
ops::MulMKLDNNKernel<uint8_t, float>);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
S8, ops::kMULMKLDNNINT8,
ops::MulMKLDNNKernel<int8_t, float>);
REGISTER_OP_KERNEL(mul, MKLDNN, ::paddle::platform::CPUPlace,
ops::MulMKLDNNKernel<uint8_t, float>);
......@@ -17,6 +17,9 @@ limitations under the License. */
#include <string>
#include <unordered_map>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
......@@ -76,6 +79,30 @@ class MulOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
ctx->ShareLoD("X", /*->*/ "Out");
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library = framework::LibraryType::kPlain;
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
int customized_type_value =
framework::OpKernelType::kDefaultCustomizedTypeValue;
auto input_data_type = ctx.Input<Tensor>("X")->type();
#ifdef PADDLE_WITH_MKLDNN
if (library == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library = framework::LibraryType::kMKLDNN;
layout = framework::DataLayout::kMKLDNN;
if (input_data_type == framework::DataTypeTrait<int8_t>::DataType ||
input_data_type == framework::DataTypeTrait<uint8_t>::DataType) {
customized_type_value = kMULMKLDNNINT8;
}
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
library, customized_type_value);
}
};
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
......@@ -84,6 +111,9 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "(Tensor), The first input tensor of mul op.");
AddInput("Y", "(Tensor), The second input tensor of mul op.");
AddOutput("Out", "(Tensor), The output tensor of mul op.");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<int>(
"x_num_col_dims",
R"DOC((int, default 1), The mul_op can take tensors with more than two
......@@ -114,6 +144,23 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
)DOC")
.SetDefault(1)
.EqualGreaterThan(1);
AddAttr<float>("scale_x",
"scale_x to used for int8 input data x."
"Only used with MKL-DNN INT8")
.SetDefault(1.0f);
AddAttr<std::vector<float>>("scale_y",
"scale_y to used for int8 input data y."
"Only used with MKL-DNN INT8")
.SetDefault({1.0f});
AddAttr<float>("scale_out",
"scale_out to be used for int8 output data."
"Only used with MKL-DNN INT8")
.SetDefault(1.0f);
AddAttr<bool>(
"force_fp32_output",
"(bool, default false) Force quantize kernel output FP32, only "
"used in quantized MKL-DNN.")
.SetDefault(false);
AddComment(R"DOC(
Mul Operator.
......@@ -237,14 +284,19 @@ class MulDoubleGradMaker : public framework::SingleGradOpDescMaker {
namespace ops = paddle::operators;
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
ops::MulOpGradMaker);
REGISTER_OPERATOR(mul_grad, ops::MulGradOp, ops::MulDoubleGradMaker);
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
REGISTER_OP_CPU_KERNEL(
mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
mul_grad_grad,
ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
......
......@@ -24,6 +24,8 @@ namespace operators {
using Tensor = framework::Tensor;
constexpr int kMULMKLDNNINT8 = 1;
template <typename DeviceContext, typename T>
class MulKernel : public framework::OpKernel<T> {
public:
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#include <mkldnn.h>
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
......@@ -89,6 +90,16 @@ inline mkldnn::memory::data_type MKLDNNGetDataType<float>() {
return mkldnn::memory::f32;
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int8_t>() {
return mkldnn::memory::s8;
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<uint8_t>() {
return mkldnn::memory::u8;
}
inline void Reorder(const mkldnn::memory& src, const mkldnn::memory& dst) {
auto reorder_prim = mkldnn::reorder(src, dst);
std::vector<mkldnn::primitive> pipeline;
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.tests.unittests.op_test import OpTest
'''
test case for s8 * s8
'''
class TestMKLDNNMulOpS8S8(OpTest):
def setUp(self):
self.op_type = "mul"
self.init_kernel_type()
self.init_data_type()
self.init_data()
self.attrs = {
"use_mkldnn": self.use_mkldnn,
"scale_x": self.scale_x,
"scale_y": self.scale_y,
"scale_out": self.scale_out,
"force_fp32_output": self.force_fp32,
}
def init_kernel_type(self):
self.use_mkldnn = True
self.force_fp32 = True
def init_data_type(self):
self.srctype = np.uint8
self.dsttype = np.float32 if self.force_fp32 else np.int8
def init_data(self):
self.scale_x = 0.6
self.scale_y = [0.8]
self.scale_out = 1.0
# limit random range inside |-127, 127| to avoid overflow on SKL
if self.srctype == np.int8:
A_data = np.random.randint(-127, 127, (2, 5)).astype(np.int8)
else:
A_data = np.random.randint(0, 127, (2, 5)).astype(np.uint8)
B_data = np.random.uniform(-127, 127, (5, 3)).astype(np.float32)
quant_B = np.round(B_data * self.scale_y[0]).astype(np.int)
output = np.dot(A_data, quant_B)
scale_output_shift = (self.scale_out) / \
(self.scale_x * self.scale_y[0])
if (self.force_fp32):
output = (output * scale_output_shift).astype(self.dsttype)
else:
output = np.round(output * scale_output_shift).astype(self.dsttype)
self.inputs = {'X': A_data, 'Y': B_data}
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output_with_place(core.CPUPlace(), atol=0)
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
'''
test case for s8 * u8
'''
class TestMKLDNNMulOpS8U8(TestMKLDNNMulOpS8S8):
def init_data_type(self):
self.srctype = np.uint8
self.dsttype = np.float32 if self.force_fp32 else np.int8
'''
test case for s8 * s8
'''
class TestMKLDNNMulOpS8S8WithFlatten(TestMKLDNNMulOpS8S8):
def setUp(self):
self.op_type = "mul"
self.init_kernel_type()
self.init_data_type()
self.init_data()
self.attrs = {
"use_mkldnn": self.use_mkldnn,
"scale_x": self.scale_x,
"scale_y": self.scale_y,
"scale_out": self.scale_out,
"force_fp32_output": self.force_fp32,
"x_num_col_dims": 2,
"y_num_col_dims": 2,
}
def init_data(self):
self.scale_x = 0.6
self.scale_y = [0.8]
self.scale_out = 1.0
# limit random range inside |-127, 127| to avoid overflow on SKL
if self.srctype == np.int8:
A_data = np.random.randint(-127, 127, (3, 4, 4, 3)).astype(np.int8)
else:
A_data = np.random.randint(0, 127, (3, 4, 4, 3)).astype(np.uint8)
B_data = np.random.uniform(-127, 127,
(2, 6, 1, 2, 3)).astype(np.float32)
A_data_reshape = A_data.reshape(3 * 4, 4 * 3)
B_data_reshape = B_data.reshape(2 * 6, 1 * 2 * 3)
quant_B = np.round(B_data_reshape * self.scale_y[0]).astype(np.int)
output = np.dot(A_data_reshape, quant_B)
scale_output_shift = (self.scale_out) / \
(self.scale_x * self.scale_y[0])
if (self.force_fp32):
output = (output * scale_output_shift).astype(self.dsttype)
else:
output = np.round(output * scale_output_shift).astype(self.dsttype)
output = output.reshape(3, 4, 1, 2, 3)
self.inputs = {'X': A_data, 'Y': B_data}
self.outputs = {'Out': output}
'''
test case for s8 * u8
'''
class TestMKLDNNMulOpS8U8WithFlatten(TestMKLDNNMulOpS8S8WithFlatten):
def init_data_type(self):
self.srctype = np.uint8
self.dsttype = np.float32 if self.force_fp32 else np.int8
if __name__ == '__main__':
unittest.main()
......@@ -69,7 +69,8 @@ class TestOperator(unittest.TestCase):
set(mul_op.attr_names),
set([
"x_num_col_dims", "y_num_col_dims", "op_role", "op_role_var",
"op_namescope", "op_callstack"
"use_mkldnn", "scale_x", "scale_y", "scale_out",
"force_fp32_output", "op_namescope", "op_callstack"
]))
self.assertEqual(mul_op.has_attr("x_num_col_dims"), True)
self.assertEqual(mul_op.attr_type("x_num_col_dims"), core.AttrType.INT)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册