mul_mkldnn_op.cc 14.2 KB
Newer Older
P
Physher 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
W
wanghuancoder 已提交
16

P
Physher 已提交
17 18
#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle
P
Physher 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::DDim;
using framework::ExecutionContext;
using framework::Tensor;
using mkldnn::inner_product_forward;
using mkldnn::memory;
using mkldnn::prop_kind;
using mkldnn::stream;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;

template <typename XT, typename YT, typename OT>
class MulPrimitiveFactory {
 public:
  explicit MulPrimitiveFactory(const mkldnn::engine &engine)
      : engine_(engine) {}

49 50 51 52 53
  inner_product_forward CreateMulPrimitive(const Tensor *x_input,
                                           const Tensor *y_input,
                                           Tensor *output,
                                           const ExecutionContext &ctx) {
    /* check data format and reorder if need */
P
Physher 已提交
54 55 56
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

57 58 59 60 61 62 63 64 65 66
    // TODO(intel-minghui) : Remove the restriction that only supports Input(Y)
    // as weights
    PADDLE_ENFORCE_EQ(
        (std::is_same<YT, float>::value), true,
        platform::errors::InvalidArgument(
            "Input(Y) must be fp32 data type since only fp32 data type is "
            "supported in the current design of MKLDNN INT8."));

    auto x_matrix = UpdateDataFormat<XT>(x_input, x_num_col_dims, ctx);
    auto y_matrix = UpdateDataFormat<YT>(y_input, y_num_col_dims, ctx);
P
Physher 已提交
67 68 69 70 71 72 73 74

    auto output_dim = output->dims();
    if (output_dim.size() != 2) {
      output->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }

    if (mul_) {
      UpdateDataPointers(ctx, output, &x_matrix);
A
Adam 已提交
75
      Execute();
76
      return *(mul_);
P
Physher 已提交
77 78
    }

79
    auto src_desc = CreateMemDescriptor<XT>(&x_matrix, MKLDNNMemoryFormat::nc);
P
Physher 已提交
80
    x_input_ = CreateMemory<XT>(src_desc, &x_matrix);
81 82 83 84 85 86 87 88 89

    if (is_int8_) {
      const auto trans_y = TransposeInputY(&y_matrix);
      auto scale_y = ctx.Attr<std::vector<float>>("scale_y");
      y_input_ = QuantInputY(trans_y, scale_y);
    } else {
      y_input_ = TransposeInputY(&y_matrix);
    }

90
    auto dst_desc = CreateMemDescriptor<OT>(output, MKLDNNMemoryFormat::any);
P
Physher 已提交
91 92

    mul_ = CreateMulPrimitive(*x_input_, *y_input_, dst_desc, output, ctx);
A
Adam 已提交
93
    Execute();
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    return *(mul_);
  }

 private:
  memory ReorderWithScale(const memory::desc &src_desc,
                          const memory::desc &dst_desc, void *src_data,
                          const std::vector<float> &scale) {
    auto mask = scale.size() > 1 ? 1 : 0;
    mkldnn::primitive_attr attr;
    attr.set_output_scales(mask, scale);

    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = memory(dst_desc, engine_);

    auto reorder_pd = mkldnn::reorder::primitive_desc(src_mem, dst_mem, attr);

    auto reorder = mkldnn::reorder(reorder_pd);

112
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
113 114 115 116 117 118
    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

    return dst_mem;
  }

  memory QuantInputY(memory input_y, const std::vector<float> &scale_y) {
    const auto &dims = input_y.get_desc().data.dims;
    auto ndims = input_y.get_desc().data.ndims;
    auto y_dims = std::vector<int64_t>(dims, dims + ndims);

    auto user_y_desc = CreateMemDescriptor<YT>(y_dims, MKLDNNMemoryFormat::oi);
    auto y_desc = CreateMemDescriptor<int8_t>(y_dims, MKLDNNMemoryFormat::oi);

    return ReorderWithScale(user_y_desc, y_desc, input_y.get_data_handle(),
                            scale_y);
  }

  mkldnn::primitive_attr CreateMulAttr(const ExecutionContext &ctx,
                                       bool force_fp32_output) {
    mkldnn::primitive_attr mul_attr;

    auto scale_y_data = ctx.Attr<std::vector<float>>("scale_y");
    auto scale_x_data = ctx.Attr<float>("scale_x");
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("scale_out");

    bool is_multi_channel = scale_y_data.size() > 1;
    int count = is_multi_channel ? scale_y_data.size() : 1;
    std::vector<float> output_shift_scale(count);
    for (int i = 0; i < count; i++) {
      if (scale_y_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_x_data * scale_y_data[i]);
    }
    int mul_mask = is_multi_channel ? 1 : 0;
    mul_attr.set_output_scales(mul_mask, output_shift_scale);

    return mul_attr;
  }

  inner_product_forward CreateMulPrimitive(const memory &x_memory,
                                           const memory &y_memory,
                                           const memory::desc &dst_desc,
                                           Tensor *output,
                                           const ExecutionContext &ctx) {
    const auto x_desc = x_memory.get_desc();
    const auto y_desc = y_memory.get_desc();
    inner_product_forward::primitive_desc mul_prim_desc;

    const auto &mul_desc = inner_product_forward::desc(
        prop_kind::forward, x_desc, y_desc, dst_desc);

    if (is_int8_) {
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto mul_attr = CreateMulAttr(ctx, force_fp32_output);
      mul_prim_desc =
          inner_product_forward::primitive_desc(mul_desc, mul_attr, engine_);
    } else {
      mul_prim_desc = inner_product_forward::primitive_desc(mul_desc, engine_);
    }

    output_ = CreateDstMemory(mul_prim_desc, ctx, output);

    return inner_product_forward(mul_prim_desc);
P
Physher 已提交
184 185
  }

A
Adam 已提交
186
  void Execute() {
187
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
188 189 190 191 192 193
    (*mul_).execute(astream, {{MKLDNN_ARG_SRC, *x_input_},
                              {MKLDNN_ARG_WEIGHTS, *y_input_},
                              {MKLDNN_ARG_DST, *output_}});
    astream.wait();
  }

P
Physher 已提交
194 195 196 197 198
  template <typename T>
  Tensor UpdateDataFormat(const Tensor *data, int num_col_dims,
                          const ExecutionContext &ctx) {
    Tensor x_tmp;
    Tensor data_matrix;
199 200
    MKLDNNMemoryFormat src_fmt = data->format();
    MKLDNNMemoryFormat dst_fmt;
P
Physher 已提交
201 202 203
    auto src_mdesc = CreateMemDescriptor<T>(data, src_fmt);

    if ((data->dims().size() == 4 &&
204
         src_fmt != (dst_fmt = MKLDNNMemoryFormat::nchw)) ||
P
Physher 已提交
205
        (data->dims().size() == 5 &&
206
         src_fmt != (dst_fmt = MKLDNNMemoryFormat::ncdhw))) {
P
Physher 已提交
207 208 209 210 211 212 213
      auto dst_mdesc = CreateMemDescriptor<T>(data, dst_fmt);
      x_tmp.mutable_data<T>(ctx.GetPlace(), data->memory_size());

      Reorder(src_mdesc, dst_mdesc, to_void_cast<T>(data->data<T>()),
              to_void_cast<T>(x_tmp.data<T>()));

      x_tmp.Resize(data->dims());
A
Adam 已提交
214
      x_tmp.set_format(platform::GetMKLDNNFormat(dst_mdesc));
P
Physher 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227
      data_matrix = framework::ReshapeToMatrix(x_tmp, num_col_dims);
    } else {
      data_matrix = framework::ReshapeToMatrix(*data, num_col_dims);
    }

    return data_matrix;
  }

  void UpdateDataPointers(const ExecutionContext &ctx, Tensor *out,
                          const Tensor *in) {
    x_input_->set_data_handle(to_void_cast<XT>(in->data<XT>()));
    output_->set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));

A
Adam 已提交
228
    if (out->format() == MKLDNNMemoryFormat::undef) {
A
Adam 已提交
229
      auto output_format = platform::GetMKLDNNFormat(*output_);
230
      out->set_format((MKLDNNMemoryFormat)output_format);
P
Physher 已提交
231 232 233 234 235
    }
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
236
      const Tensor *tensor, MKLDNNMemoryFormat format,
P
Physher 已提交
237
      memory::data_type type = platform::MKLDNNGetDataType<T>()) {
A
Adam 已提交
238
    auto dims = framework::vectorize<int64_t>(tensor->dims());
P
Physher 已提交
239 240 241 242 243
    return platform::MKLDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
A
Adam 已提交
244
      const std::vector<int64_t> &dims, MKLDNNMemoryFormat format,
P
Physher 已提交
245 246 247 248 249 250
      memory::data_type type = platform::MKLDNNGetDataType<T>()) {
    return platform::MKLDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory CreateMemory(const memory::desc &desc, const Tensor *tensor) {
A
Adam 已提交
251
    return memory(desc, engine_, to_void_cast<T>(tensor->data<T>()));
P
Physher 已提交
252 253 254 255 256
  }

  memory CreateDstMemory(
      const inner_product_forward::primitive_desc &mul_prim_desc,
      const ExecutionContext &ctx, Tensor *output) {
A
Adam 已提交
257 258
    auto dst_desc = mul_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
P
Physher 已提交
259 260

    OT *output_data = output->mutable_data<OT>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
261 262
    output->set_format(paddle::platform::GetMKLDNNFormat(dst_desc));
    return memory(dst_desc, engine_, to_void_cast<OT>(output_data));
P
Physher 已提交
263 264 265 266
  }

  memory Reorder(const memory::desc &src_desc, const memory::desc &dst_desc,
                 void *src_data, void *dst_data = NULL) {
A
Adam 已提交
267 268 269
    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = dst_data ? memory(dst_desc, engine_, dst_data)
                            : memory(dst_desc, engine_);
P
Physher 已提交
270 271

    auto reorder = mkldnn::reorder(src_mem, dst_mem);
A
Adam 已提交
272

273
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
274 275 276 277 278 279
    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }
P
Physher 已提交
280 281 282 283 284

    return dst_mem;
  }

  memory TransposeInputY(const Tensor *input_y) {
A
Adam 已提交
285
    auto dims = framework::vectorize<int64_t>(input_y->dims());
P
Physher 已提交
286
    std::swap(dims[0], dims[1]);  // Correct output dimensions
287 288
    auto src_desc = CreateMemDescriptor<YT>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<YT>(dims, MKLDNNMemoryFormat::oi);
P
Physher 已提交
289 290 291 292
    return Reorder(src_desc, dst_desc, to_void_cast<YT>(input_y->data<YT>()));
  }

  const mkldnn::engine &engine_;
293 294 295 296
  paddle::optional<memory> x_input_;
  paddle::optional<memory> y_input_;
  paddle::optional<memory> output_;
  paddle::optional<inner_product_forward> mul_;
297 298
  static constexpr bool is_int8_ =
      std::is_same<XT, int8_t>::value || std::is_same<XT, uint8_t>::value;
P
Physher 已提交
299 300 301 302 303 304 305
};

/* OT: output data type */
template <typename XT, typename YT, typename OT>
std::shared_ptr<MulPrimitiveFactory<XT, YT, OT>> GetPrimitiveFactory(
    const MKLDNNDeviceContext &dev_ctx, const ExecutionContext &ctx,
    const Tensor *input_x, const Tensor *input_y,
306
    const mkldnn::engine &mkldnn_engine) {
307 308 309 310 311
  std::string key = platform::CreateKey(
      dev_ctx, input_x->type(), framework::vectorize(input_x->dims()),
      input_y->type(), framework::vectorize(input_y->dims()),
      ctx.OutputName("Out"));
  key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
P
Physher 已提交
312 313 314 315 316 317

  auto prim_creator = std::static_pointer_cast<MulPrimitiveFactory<XT, YT, OT>>(
      dev_ctx.GetBlob(key));

  if (prim_creator == nullptr) {
    prim_creator =
318
        std::make_shared<MulPrimitiveFactory<XT, YT, OT>>(mkldnn_engine);
P
Physher 已提交
319 320 321 322 323 324 325 326 327 328 329 330
    dev_ctx.SetBlob(key, prim_creator);
  }

  return prim_creator;
}

template <typename XT, typename YT>
inner_product_forward GetMulPrimitive(const MKLDNNDeviceContext &dev_ctx,
                                      const ExecutionContext &ctx,
                                      const Tensor *input_x,
                                      const Tensor *input_y, Tensor *output,
                                      const mkldnn::engine &mkldnn_engine) {
331
  constexpr bool is_int8 =
P
Physher 已提交
332 333 334
      std::is_same<XT, int8_t>::value || std::is_same<XT, uint8_t>::value;
  bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

335
  if (is_int8 && !force_fp32_output) {
P
Physher 已提交
336
    return GetPrimitiveFactory<XT, YT, int8_t>(dev_ctx, ctx, input_x, input_y,
337
                                               mkldnn_engine)
P
Physher 已提交
338 339 340 341
        ->CreateMulPrimitive(input_x, input_y, output, ctx);

  } else {
    return GetPrimitiveFactory<XT, YT, float>(dev_ctx, ctx, input_x, input_y,
342
                                              mkldnn_engine)
P
Physher 已提交
343 344 345 346 347 348 349 350 351
        ->CreateMulPrimitive(input_x, input_y, output, ctx);
  }
}

/* XT: input x data type, YT: input y data type */
template <typename XT, typename YT>
class MulMKLDNNKernel : public framework::OpKernel<XT> {
 public:
  void Compute(const ExecutionContext &ctx) const override {
352 353 354
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Mul must use CPUPlace"));
355
    platform::MKLDNNDeviceContext::tls().log_lib_version();
P
Physher 已提交
356
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
357
    auto &mkldnn_engine = dev_ctx.GetEngine();
P
Physher 已提交
358 359 360 361 362 363 364 365 366 367 368 369

    const Tensor *x = ctx.Input<Tensor>("X");
    const Tensor *y = ctx.Input<Tensor>("Y");
    Tensor *out = ctx.Output<Tensor>("Out");
    auto out_dims = out->dims();

    auto mul = GetMulPrimitive<XT, YT>(dev_ctx, ctx, x, y, out, mkldnn_engine);

    if (out_dims.size() != 2) {
      out->Resize(out_dims);
    }
    out->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
370 371
    out->set_format(platform::MKLDNNFormatForSize(out_dims.size(),
                                                  MKLDNNMemoryFormat::nchw));
P
Physher 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kMULMKLDNNINT8,
                                    ops::MulMKLDNNKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kMULMKLDNNINT8,
                                    ops::MulMKLDNNKernel<int8_t, float>);

REGISTER_OP_KERNEL(mul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::MulMKLDNNKernel<uint8_t, float>);