quantization_pass.py 54.9 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
W
WangZhen 已提交
21 22
from .... import unique_name

23 24
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
25 26
    'TransformForMobilePass', 'ScaleForTrainingPass', 'ScaleForInferencePass',
    'AddQuantDequantPass'
27
]
W
WangZhen 已提交
28

29
_quantizable_op_list = ['conv2d', 'depthwise_conv2d', 'mul']
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

_out_scale_op_list = [
    "mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid", "depthwise_conv2d",
    "batch_norm", "concat", "tanh", "pad", "elementwise_add", "elementwise_mul",
    "dropout", "split", "prelu", "conv2d_transpose", "leaky_relu"
]

W
WangZhen 已提交
46

47 48 49 50
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
51
        'The scope cannot be set None.'
52
    assert place is not None, \
53
        'The place cannot be set None.'
54 55 56 57
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


58
class QuantizationTransformPass(object):
W
WangZhen 已提交
59
    def __init__(self,
60
                 scope=None,
61
                 place=None,
W
WangZhen 已提交
62 63 64 65
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
66
                 window_size=10000,
67 68
                 moving_rate=0.9,
                 skip_pattern='skip_quant'):
W
WangZhen 已提交
69
        """
70
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
71
        activation quantization type.
72

W
WangZhen 已提交
73
        Args:
74 75 76
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
            type, this pass will create some new parameters. The scope is used to
            initialize these new parameters.
77
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
78
            parameters described above.
W
WangZhen 已提交
79 80 81 82
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
83 84 85 86 87
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
W
WangZhen 已提交
88
            weight_quantize_type (str): quantization type for weights,
89 90 91
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
W
WangZhen 已提交
92
            window_size (int): the window size for 'range_abs_max' quantization.
93 94 95
            skip_pattern(str): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
96

W
WangZhen 已提交
97 98
        Examples:
        .. code-block:: python
99 100 101 102
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
103
            from paddle.fluid.contrib.slim.graph import IrGraph
104 105
            from paddle.fluid import core

106
            graph = IrGraph(core.Graph(program.desc), for_test=False)
107
            place = fluid.CPUPlace()
108
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
109
            place)
110
            transform_pass.apply(graph)
W
WangZhen 已提交
111
        """
112
        self._scope = scope
113
        self._place = place
114 115
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
116
        self._skip_pattern = skip_pattern
W
WangZhen 已提交
117

118 119 120 121 122
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
123 124
        if activation_quantize_type not in quant_type:
            raise ValueError(
125 126 127
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
128 129
        if weight_quantize_type not in quant_type:
            raise ValueError(
130 131 132
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
                % (str(weight_quantize_type)))
W
WangZhen 已提交
133

134 135 136
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
137
        self._moving_rate = moving_rate
W
WangZhen 已提交
138

139
        self._quantizable_ops = _quantizable_op_list
140
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
141 142
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
143
        ]
144 145
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
146

147
    def apply(self, graph):
148 149 150 151 152 153 154 155
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
156
        assert isinstance(graph,
157 158
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
159 160
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
161
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
162

163 164 165 166 167
        def _quant_preprocess(op_node):
            user_skipped = isinstance(self._skip_pattern, str) and \
                           op_node.op().has_attr("op_namescope") and \
                           op_node.op().attr("op_namescope").find(self._skip_pattern) != -1

168
            if user_skipped:
169 170
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
171 172
        def _transform_forward(graph, op):
            for var_node in op.inputs:
173 174
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
175 176 177
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
178
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
179 180
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
181
                        in persistable_vars else self._activation_quantize_type
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
                    if quant_type == 'channel_wise_abs_max':
                        assert var_node.name(
                        ) in persistable_vars, "'channel_wise_abs_max' can only be applied on weights."
                        if op.name() in self._conv_ops:
                            quant_var_node, scale_var_node = self._insert_channel_quant_op(
                                graph, var_node, quant_bits)
                            dequant_var_node = self._insert_channel_dequant_op(
                                graph, quant_var_node, [scale_var_node],
                                [quant_bits])
                        else:
                            quant_var_node, scale_var_node = self._insert_quant_op(
                                graph, var_node, quant_bits, 'abs_max')
                            dequant_var_node = self._insert_dequant_op(
                                graph, quant_var_node, scale_var_node,
                                quant_bits)
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
                            graph, var_node, quant_bits, quant_type)
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
W
WangZhen 已提交
202
                    dequantized_vars[var_node.name()] = dequant_var_node
203
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
204 205 206 207

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
208 209
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
210 211
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
212
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
213 214 215 216
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
217

218
        if not self._is_test:
W
WangZhen 已提交
219
            self._create_global_step(graph)
220
        ops = graph.all_op_nodes()
221 222 223 224 225 226
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
W
WangZhen 已提交
227 228
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
229
        for op in ops:
230
            if op.name() in self._quantizable_ops:
231 232 233 234
                skipped = op.op().has_attr("skip_quant") and \
                         op.op().attr("skip_quant")
                if skipped:
                    continue
W
WangZhen 已提交
235
                _transform_forward(graph, op)
W
WangZhen 已提交
236 237
        # The loop for renaming the inputs of backward op.
        for op in ops:
238
            if op.name() in self._quantizable_grad_ops:
239 240 241 242
                skipped = op.op().has_attr("skip_quant") and \
                         op.op().attr("skip_quant")
                if skipped:
                    continue
W
WangZhen 已提交
243
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
244
        graph.resolve_hazard()
245
        return graph
W
WangZhen 已提交
246

W
WangZhen 已提交
247
    def _create_global_step(self, graph):
248 249
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
250
            counter_name = cpt.to_text('@STEP_COUNTER@')
251
            for node in graph.all_var_nodes():
W
WangZhen 已提交
252
                if node.name() == counter_name:
253 254
                    self._global_step = node
            if self._global_step is None:
255
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
256 257 258 259
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
260 261 262 263 264 265
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
266 267
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
268
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
269 270
                increment_op = graph.create_op_node(
                    op_type='increment',
271 272 273 274 275
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
276 277
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
278 279 280
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
281

W
WangZhen 已提交
282 283 284 285 286 287 288
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
289 290
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
291 292 293
        elif quant_type == 'moving_average_abs_max':
            return self._insert_quant_moving_average_abs_max_op(graph, var_node,
                                                                quant_bits)
W
WangZhen 已提交
294 295 296 297 298 299 300 301 302

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
303 304 305
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
306 307
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
308
            var_type=var_node.type(),
309
            shape=[1],
310
            var_dtype=var_node.dtype())
W
WangZhen 已提交
311 312
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
313 314 315 316
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
317 318 319
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
320 321 322
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
323 324 325 326 327 328 329 330 331 332
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
333 334 335
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
336

337
        scale_in_node = graph.create_persistable_node(
W
WangZhen 已提交
338 339 340
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
341
            var_dtype=var_node.dtype())
342 343
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
344 345 346 347 348 349
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
350 351 352 353 354

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

355
        if not self._is_test:
W
WangZhen 已提交
356
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
357
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
358 359
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
360
                shape=[self._window_size],
361
                var_dtype=var_node.dtype())
362 363
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
364 365 366 367 368 369 370
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

371
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
372 373
            outputs['OutScales'] = scales_node
        attrs = {
374
            'window_size': self._window_size,
W
WangZhen 已提交
375
            'bit_length': quant_bits,
376 377
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
378 379 380 381 382 383 384
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

385 386 387 388
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
389

390 391 392
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
393 394 395

        return quant_var_node, scale_out_node

396 397 398 399 400 401 402 403 404 405 406 407 408 409
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node,
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
410 411
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
412 413 414 415 416 417
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
418 419 420 421 422 423 424 425 426 427

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
428 429
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
430
            _init_var_node(
431
                state_in_node,
432 433 434 435
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
436 437 438 439 440
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
441 442 443 444 445 446
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    def _insert_channel_quant_op(self, graph, var_node, quant_bits):
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.type(),
            shape=[var_node.shape()[0]],
            var_dtype=var_node.dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
513 514 515 516 517 518 519 520
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
521 522 523
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
524 525 526
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
527 528 529 530
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
531 532 533
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
534 535 536
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
537 538
        return dequant_var_node

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
                                   quant_bits):
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

W
WangZhen 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
580
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
581 582
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
583 584 585


class QuantizationFreezePass(object):
586 587 588 589 590 591 592 593 594 595 596 597
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
598
        weight_quantize_type (str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'.
599 600 601 602
        The 'range_abs_max' usually is not used for weight, since weights are fixed once the
        model is well trained.
    """

W
WangZhen 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
618
        self._quantizable_ops = _quantizable_op_list
619
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
620 621
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
622 623 624 625 626
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
627 628 629 630 631 632
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
633 634
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
635 636 637
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
638
                input_arg_name = op_node.input('X')[0]
W
WangZhen 已提交
639 640 641 642
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
643 644 645 646 647 648 649 650
                    elif self._weight_quantize_type == 'channel_wise_abs_max':
                        param = self._load_var(input_arg_name)
                        if len(param.shape) == 4:  # conv2d or depthwise_conv2d
                            scale_v = []
                            for i in range(param.shape[0]):
                                scale_v.append(np.max(np.abs(param[i])))
                        else:
                            scale_v = np.max(np.abs(param))
W
WangZhen 已提交
651
                    else:
652 653
                        scale_v = self._load_var(
                            op_node.output('OutScale')[0])[0]
W
WangZhen 已提交
654 655 656 657 658
                    self._var_scale_map[input_arg_name] = scale_v
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
659
                                                    self._weight_bits)
W
WangZhen 已提交
660
                    self._restore_var(input_arg_name, quantized_param_v)
661
                else:
662 663
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
664
                    self._var_scale_map[input_arg_name] = scale_v
W
WangZhen 已提交
665

666
        ops = graph.all_op_nodes()
W
WangZhen 已提交
667 668 669 670 671
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

672
        ops = graph.all_op_nodes()
W
WangZhen 已提交
673 674 675
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
676 677 678 679
                skipped = op_node.op().has_attr("skip_quant") and \
                         op_node.op().attr("skip_quant")
                if skipped:
                    continue
680 681 682 683
                if self._weight_quantize_type == 'channel_wise_abs_max' and op_name in self._conv_ops:
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
684 685 686 687

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
688 689 690
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
691 692 693 694
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
695
        graph.resolve_hazard()
696
        return graph
W
WangZhen 已提交
697 698

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
699 700
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
701 702
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
703
        else:
704 705
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
706
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
707

708 709 710 711
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
712 713 714 715 716
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
717 718 719 720 721 722 723 724 725 726 727 728 729 730
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
            scale_v = self._var_scale_map[original_var_name]
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
                scale_var_node = self._var_scale_map[original_var_name]

731
        if len(op_node.output_arg_names()) != 1:
732 733 734
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

735 736
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
737 738 739 740 741
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
742 743
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
744 745 746
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
767
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
768 769
        return dequant_var_node

W
WangZhen 已提交
770
    def _insert_post_dequant_op(self, graph, op_node):
771
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
772 773 774 775 776 777 778
        if len(op_node.input_arg_names()) >= 2 and len(persistable_vars) == 0:
            raise ValueError("The op %s has more than one inputs "
                             "and all of them are not persistable. "
                             "Now, it is not supported!" % (op_node.name()))
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
779
        for var_node in op_node.inputs:
W
WangZhen 已提交
780
            name = var_node.name()
781 782 783 784 785
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
786
                new_in.clear_outputs()
W
WangZhen 已提交
787 788
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
789
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
790 791 792 793
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
794
                max_range *= param_range / scale_v
W
WangZhen 已提交
795
            else:
796
                max_range *= act_range
797
                assert isinstance(scale_v, IrNode)
W
WangZhen 已提交
798 799
                scale_var_node = self._var_scale_map[original_var_name]

800
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
801 802 803
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

804 805
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
806 807
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
808 809 810
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
811 812
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
813 814 815 816
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
817 818 819 820 821 822
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
823
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
824 825 826 827 828
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

829 830 831
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
832 833 834

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
835
        ops = graph.all_op_nodes()
W
WangZhen 已提交
836 837 838 839 840 841
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

842 843 844 845 846 847
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
871
    def _is_float(self, v):
W
WangZhen 已提交
872 873 874
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
875
    def _quant(self, x, scale, num_bits):
876 877 878 879 880 881
        if isinstance(scale, list):
            for i, s in enumerate(scale):
                x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
            return x
        else:
            return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
882 883 884


class ConvertToInt8Pass(object):
885 886 887 888 889 890 891 892 893
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
        8bits weight tensors.
    """

894 895 896 897 898 899 900
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
901
        self._quantizable_ops = _quantizable_op_list
902 903

    def apply(self, graph):
904 905 906 907 908 909 910
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
911 912
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
913 914 915 916
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
917 918 919 920
                skipped = op_node.op().has_attr("skip_quant") and \
                         op_node.op().attr("skip_quant")
                if skipped:
                    continue
921 922 923 924 925 926 927 928 929 930 931 932
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
933
        graph.resolve_hazard()
934 935 936 937
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
938
        int8_var_node = graph.create_persistable_node(
939
            name=cpt.to_text(int8_var_node_name),
940 941
            var_type=var_node.type(),
            shape=var_node.shape(),
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
957
        ops = graph.all_op_nodes()
958 959 960 961 962 963
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

964 965 966 967 968 969
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
970 971 972 973
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
974 975 976 977
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

978
    def __init__(self):
979 980
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
981 982

    def apply(self, graph):
983 984 985 986 987 988 989 990
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
991
        ops = graph.all_op_nodes()
992 993 994
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
995
                op_node.set_type('quantize')
996 997 998 999 1000 1001 1002
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1003
                op_node.set_type('dequantize')
1004 1005 1006 1007 1008 1009
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1010
        graph.resolve_hazard()
1011
        return graph
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028


class ScaleForTrainingPass(object):
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._is_test = None
1029
        self._teller_set = _out_scale_op_list
1030 1031 1032 1033 1034 1035 1036 1037 1038

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1039 1040
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        self._is_test = graph.is_test()
        ops = graph.all_op_nodes()
        for op_node in ops:
            name = op_node.name()
            if name in self._teller_set:
                if len(op_node.output_arg_names()) != 1:
                    continue
                in_node = graph._find_node_by_name(
                    op_node.outputs, op_node.output_arg_names()[0])
                out_node = graph.create_var_node_from_desc(in_node.var())
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
                ins = {'X': in_node}
                outs = {'Out': out_node, 'OutScale': scale_node}
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    data_type = 'float64' if in_node.dtype(
                    ) == core.VarDesc.VarType.FP64 else 'float32'
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, out_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


class ScaleForInferencePass(object):
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1131
        self._teller_set = _out_scale_op_list
1132 1133 1134 1135 1136 1137 1138 1139 1140

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1141 1142
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
        ops = graph.all_op_nodes()
        for op_node in ops:
            name = op_node.name()
            if name in self._teller_set:
                if len(op_node.output_arg_names()) != 1:
                    continue
                scale_name = self._scale_name(op_node.output_arg_names()[0])
                scale_v = np.array(
                    self._scope.find_var(scale_name).get_tensor())[0]
                op_node.op()._set_attr("out_scale", float(scale_v))
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1161 1162 1163


class AddQuantDequantPass(object):
1164 1165 1166 1167 1168 1169
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
                 skip_pattern='skip_quant'):
1170 1171
        """
        This pass is used to add quant_dequant op for some ops, such as the
1172
        'elementwise_add' and 'pool2d' op.
1173 1174 1175 1176 1177 1178
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1179 1180
        self._target_ops = ["elementwise_add", "pool2d"]
        self._target_grad_ops = ['%s_grad' % (op) for op in self._target_ops]
1181
        self._skip_pattern = skip_pattern
1182 1183 1184

    def apply(self, graph):
        """
1185
        Add quant_dequant before some ops, such as the 'elementwise_add'
1186
        and 'pool2d' op.
1187 1188 1189 1190 1191 1192
        Args:
            graph(IrGraph): the target graph.
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1193
        dequantized_vars_map = collections.OrderedDict()
1194
        ops = graph.all_op_nodes()
1195

1196
        for op_node in ops:
1197
            if op_node.name() in self._target_ops:
1198 1199 1200 1201 1202
                if isinstance(self._skip_pattern, str) and \
                           op_node.op().has_attr("op_namescope") and \
                           op_node.op().attr("op_namescope").find(self._skip_pattern) != -1:
                    continue

1203 1204 1205 1206 1207 1208 1209 1210 1211
                in_nodes_all_not_persistable = True
                for input_name in op_node.input_arg_names():
                    in_node = graph._find_node_by_name(op_node.inputs,
                                                       input_name)
                    in_nodes_all_not_persistable = (
                        in_nodes_all_not_persistable and
                        not in_node.persistable())
                if not in_nodes_all_not_persistable:
                    continue
1212

1213 1214 1215 1216
                input_names = op_node.input_arg_names()
                for input_name in input_names:
                    in_node = graph._find_node_by_name(op_node.inputs,
                                                       input_name)
1217 1218
                    quant_var_node, scale_var_node = \
                        self._inser_quant_dequant_moving_average_abs_max_op(
1219
                        graph, in_node, self._quant_bits)
1220
                    dequantized_vars_map[input_name] = quant_var_node
1221
                    graph.update_input_link(in_node, quant_var_node, op_node)
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

        for op_node in ops:
            if op_node.name() in self._target_grad_ops:
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node