matmul_op.cc 19.7 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Y
Yu Yang 已提交
16
#include <utility>
17
#include <vector>
Y
Yu Yang 已提交
18 19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
M
Markus Kliegl 已提交
21 22 23

namespace paddle {
namespace operators {
24 25 26 27 28 29 30 31 32 33 34

/**
 * Printing shape information into a string is easy to use.
 */
inline static std::string DumpMatrixShape(const math::MatDescriptor &desc) {
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
35 36 37 38
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
39
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48 49
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
50
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
51 52 53 54 55 56 57 58 59
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
60 61
  void Compute(const framework::ExecutionContext &context) const override {
    auto &x =
Y
Yu Yang 已提交
62
        detail::Ref(context.Input<framework::Tensor>("X"), "Cannot find X");
Y
yuyang18 已提交
63
    auto &y =
Y
Yu Yang 已提交
64
        detail::Ref(context.Input<framework::Tensor>("Y"), "Cannot find Y");
Y
yuyang18 已提交
65
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
66 67 68 69 70 71 72
    out->mutable_data<T>(context.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
    auto mat_dim_b = math::CreateMatrixDescriptor(
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
73
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88
    int head_number = 1;
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
89
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
90 91 92
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
93
      blas.MatMulWithHead(x, mat_dim_a, y, mat_dim_b, scale, head_number, out,
94 95 96
                          T(0), split_vertical_y);
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
97 98
    }
#else
S
sneaxiy 已提交
99
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
100
#endif
Y
Yu Yang 已提交
101 102 103 104 105
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
106
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
107 108 109 110 111 112 113 114 115 116 117 118
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
119 120
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
121 122 123 124 125 126 127 128 129 130 131
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
132

Y
Yu Yang 已提交
133 134 135 136 137 138 139 140 141 142
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
Y
yuyang18 已提交
143
    framework::Tensor *x, const math::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
171 172 173
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
Y
Yu Yang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
218 219 220 221
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
Y
Yu Yang 已提交
222 223 224 225
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
226 227 228 229 230 231 232 233 234 235 236 237 238

    int head_number = 1;
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
S
sneaxiy 已提交
239
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
S
sneaxiy 已提交
240
                static_cast<T>(context.Attr<float>("alpha")), out, T(0));
Y
Yu Yang 已提交
241 242
  }

Y
yuyang18 已提交
243 244 245
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
Y
Yu Yang 已提交
246
                     bool trans_b, bool is_fold_init_dims_b,
Y
yuyang18 已提交
247
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
248 249 250 251 252 253
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
254
      auto &ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263 264
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

Y
yuyang18 已提交
265
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
266 267 268 269
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
270 271
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
318 319 320 321 322 323

class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
324
  void InferShape(framework::InferShapeContext *context) const override {
M
Markus Kliegl 已提交
325 326 327 328 329 330 331 332 333 334
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasInput("Y"),
                   "Input(Y) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasOutput("Out"),
                   "Output(Out) of MatMulOp should not be null.");

    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");

Y
Yu Yang 已提交
335 336
    auto mat_dim_x =
        math::CreateMatrixDescriptor(RowMatrixFromVector(dim_x), 0,
Y
Yu Yang 已提交
337
                                     context->Attrs().Get<bool>("transpose_X"));
Y
Yu Yang 已提交
338 339
    auto mat_dim_y =
        math::CreateMatrixDescriptor(ColumnMatrixFromVector(dim_y), 0,
Y
Yu Yang 已提交
340
                                     context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
341

342 343 344 345 346 347 348
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
349
    if (context->IsRuntime()) {
350 351 352 353 354 355 356 357
      PADDLE_ENFORCE(
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
          "ShapeError: The batch size of the two matrices should be equal, or "
          "at least one is zero.\n"
          "But received X's shape: %s, Y's shape: %s.",
          DumpMatrixShape(mat_dim_x).c_str(),
          DumpMatrixShape(mat_dim_y).c_str());
P
phlrain 已提交
358
    }
359
    int64_t dim_out_y = mat_dim_y.width_;
360 361
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    int head_number = context->Attrs().Get<int>("head_number");
362
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
363 364 365 366 367 368 369 370 371 372 373
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
          head_number, mat_dim_x.width_,
          "ShapeError: Unsatisfied mkl acceleration library requirements: "
          "The number of heads "
          "(%d) must be equal to X's width. But received X's shape: %s.",
          head_number, DumpMatrixShape(mat_dim_x).c_str());

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
374
    }
375
#else
376 377
    PADDLE_ENFORCE_EQ(
        mat_dim_x.width_, mat_dim_y.height_,
378 379 380 381 382
        platform::errors::InvalidArgument(
            "ShapeError: Input X's width should be equal to the Y's height, "
            "but received X's shape: [%s],"
            "Y's shape: [%s].",
            dim_x, dim_y));
383 384
#endif

385
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
386 387 388
    if (mat_dim_x.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_x);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
389
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
390 391 392
    } else if (mat_dim_y.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_y);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
393
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
394
    } else {
395
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
396 397
    }

Y
Yu Yang 已提交
398 399 400
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
401 402
    }

Y
Yu Yang 已提交
403 404
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
405 406
    }

Y
Yu Yang 已提交
407 408
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
409 410 411 412 413 414 415 416
    }
    context->SetOutputDim("Out", framework::make_ddim(dim_out));
    context->ShareLoD("X", /*->*/ "Out");
  }
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
417
  void Make() override {
M
Markus Kliegl 已提交
418 419 420 421 422 423 424 425 426 427 428
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
429
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
430 431 432 433
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
434
    AddComment(R"DOC(
K
kexinzhao 已提交
435 436 437 438
MatMul Operator.


This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452
over the last two dimensions of the input tensors `X` and `Y`.

If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.

Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
453
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
M
Markus Kliegl 已提交
454

455 456 457
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]

M
Markus Kliegl 已提交
458 459
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
460 461
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
462
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
463
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
464
- We add `transpose_X` and `transpose_Y` flags.
465 466 467
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
468 469

Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
470 471
or not. But the output only shares the LoD information with input `X`.

M
Markus Kliegl 已提交
472 473 474 475 476 477 478 479 480
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
481
  void InferShape(framework::InferShapeContext *context) const override {
M
Markus Kliegl 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    PADDLE_ENFORCE(context->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(context->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

H
hong 已提交
501 502
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
503
 public:
H
hong 已提交
504
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
505 506

 protected:
507
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
508
    retv->SetType("matmul_grad");
H
hong 已提交
509 510 511 512 513 514
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
515 516
  }
};
M
Markus Kliegl 已提交
517 518 519 520
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
521
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
H
hong 已提交
522 523
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
524
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad);
M
Markus Kliegl 已提交
525
REGISTER_OP_CPU_KERNEL(
Y
yuyang18 已提交
526
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>,
527
    ops::MatMulKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
528 529
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
530
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>,
531
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, double>);
Y
Yu Yang 已提交
532 533 534

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
Y
yuyang18 已提交
535 536 537 538
    matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>);
Y
Yu Yang 已提交
539 540
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
541 542 543 544
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext,
                          paddle::platform::float16>);
Y
Yu Yang 已提交
545
#endif