matmul_op.cc 18.9 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Y
Yu Yang 已提交
16
#include <utility>
17
#include <vector>
Y
Yu Yang 已提交
18 19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
M
Markus Kliegl 已提交
21 22 23

namespace paddle {
namespace operators {
24 25 26 27 28 29 30 31 32 33 34

/**
 * Printing shape information into a string is easy to use.
 */
inline static std::string DumpMatrixShape(const math::MatDescriptor &desc) {
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
35 36 37 38
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
39
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48 49
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
50
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
51 52 53 54 55 56 57 58 59
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
60 61
  void Compute(const framework::ExecutionContext &context) const override {
    auto &x =
Y
Yu Yang 已提交
62
        detail::Ref(context.Input<framework::Tensor>("X"), "Cannot find X");
Y
yuyang18 已提交
63
    auto &y =
Y
Yu Yang 已提交
64
        detail::Ref(context.Input<framework::Tensor>("Y"), "Cannot find Y");
Y
yuyang18 已提交
65
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
66 67 68 69 70 71 72
    out->mutable_data<T>(context.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
    auto mat_dim_b = math::CreateMatrixDescriptor(
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
73
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
74 75 76

#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    int head_number = context.Attr<int>("head_number");
77 78 79
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
80
      blas.MatMulWithHead(x, mat_dim_a, y, mat_dim_b, scale, head_number, out,
81 82 83
                          T(0), split_vertical_y);
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
84 85
    }
#else
S
sneaxiy 已提交
86
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
87
#endif
Y
Yu Yang 已提交
88 89 90 91 92
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
93
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
94 95 96 97 98 99 100 101 102 103 104 105
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
106 107
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
108 109 110 111 112 113 114 115 116 117 118
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
119

Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
Y
yuyang18 已提交
130
    framework::Tensor *x, const math::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
158 159 160
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
Y
Yu Yang 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
205 206 207 208
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
Y
Yu Yang 已提交
209 210 211 212
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
S
sneaxiy 已提交
213
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
S
sneaxiy 已提交
214
                static_cast<T>(context.Attr<float>("alpha")), out, T(0));
Y
Yu Yang 已提交
215 216
  }

Y
yuyang18 已提交
217 218 219
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
Y
Yu Yang 已提交
220
                     bool trans_b, bool is_fold_init_dims_b,
Y
yuyang18 已提交
221
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
222 223 224 225 226 227
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
228
      auto &ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
229 230 231 232 233 234 235 236 237 238
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

Y
yuyang18 已提交
239
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
240 241 242 243
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
244 245
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
292 293 294 295 296 297

class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
298
  void InferShape(framework::InferShapeContext *context) const override {
M
Markus Kliegl 已提交
299 300 301 302 303 304 305 306 307 308
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasInput("Y"),
                   "Input(Y) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasOutput("Out"),
                   "Output(Out) of MatMulOp should not be null.");

    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");

Y
Yu Yang 已提交
309 310
    auto mat_dim_x =
        math::CreateMatrixDescriptor(RowMatrixFromVector(dim_x), 0,
Y
Yu Yang 已提交
311
                                     context->Attrs().Get<bool>("transpose_X"));
Y
Yu Yang 已提交
312 313
    auto mat_dim_y =
        math::CreateMatrixDescriptor(ColumnMatrixFromVector(dim_y), 0,
Y
Yu Yang 已提交
314
                                     context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
315

316 317 318 319 320 321 322
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
323
    if (context->IsRuntime()) {
324 325 326 327 328 329 330 331
      PADDLE_ENFORCE(
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
          "ShapeError: The batch size of the two matrices should be equal, or "
          "at least one is zero.\n"
          "But received X's shape: %s, Y's shape: %s.",
          DumpMatrixShape(mat_dim_x).c_str(),
          DumpMatrixShape(mat_dim_y).c_str());
P
phlrain 已提交
332
    }
333
    int64_t dim_out_y = mat_dim_y.width_;
334 335
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    int head_number = context->Attrs().Get<int>("head_number");
336
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
337 338 339 340 341 342 343 344 345 346 347
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
          head_number, mat_dim_x.width_,
          "ShapeError: Unsatisfied mkl acceleration library requirements: "
          "The number of heads "
          "(%d) must be equal to X's width. But received X's shape: %s.",
          head_number, DumpMatrixShape(mat_dim_x).c_str());

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
348
    }
349
#else
350 351 352 353 354 355
    PADDLE_ENFORCE_EQ(
        mat_dim_x.width_, mat_dim_y.height_,
        "ShapeError: Input X's width should be equal to the Y's height, "
        "but received X's shape: %s,"
        "Y's shape: %s.",
        DumpMatrixShape(mat_dim_x).c_str(), DumpMatrixShape(mat_dim_y).c_str());
356 357
#endif

358
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
359 360 361
    if (mat_dim_x.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_x);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
362
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
363 364 365
    } else if (mat_dim_y.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_y);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
366
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
367
    } else {
368
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
369 370
    }

Y
Yu Yang 已提交
371 372 373
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
374 375
    }

Y
Yu Yang 已提交
376 377
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
378 379
    }

Y
Yu Yang 已提交
380 381
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
382 383 384 385 386 387 388 389
    }
    context->SetOutputDim("Out", framework::make_ddim(dim_out));
    context->ShareLoD("X", /*->*/ "Out");
  }
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
390
  void Make() override {
M
Markus Kliegl 已提交
391 392 393 394 395 396 397 398 399 400 401
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
402
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
403 404 405 406
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
407
    AddComment(R"DOC(
K
kexinzhao 已提交
408 409 410 411
MatMul Operator.


This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425
over the last two dimensions of the input tensors `X` and `Y`.

If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.

Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
426
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
M
Markus Kliegl 已提交
427

428 429 430
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]

M
Markus Kliegl 已提交
431 432
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
433 434
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
435
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
436
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
437
- We add `transpose_X` and `transpose_Y` flags.
438 439 440
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
441 442

Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
443 444
or not. But the output only shares the LoD information with input `X`.

M
Markus Kliegl 已提交
445 446 447 448 449 450 451 452 453
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
454
  void InferShape(framework::InferShapeContext *context) const override {
M
Markus Kliegl 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    PADDLE_ENFORCE(context->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(context->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

H
hong 已提交
474 475
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
476
 public:
H
hong 已提交
477
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
478 479

 protected:
H
hong 已提交
480 481
  std::unique_ptr<T> Apply() const override {
    auto *retv = new T();
Y
Yu Yang 已提交
482
    retv->SetType("matmul_grad");
H
hong 已提交
483 484 485 486 487 488 489
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(retv);
Y
Yu Yang 已提交
490 491
  }
};
M
Markus Kliegl 已提交
492 493 494 495
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
496
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
H
hong 已提交
497 498
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
499
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad);
M
Markus Kliegl 已提交
500
REGISTER_OP_CPU_KERNEL(
Y
yuyang18 已提交
501
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>,
502
    ops::MatMulKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
503 504
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
505
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>,
506
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, double>);
Y
Yu Yang 已提交
507 508 509

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
Y
yuyang18 已提交
510 511 512 513
    matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>);
Y
Yu Yang 已提交
514 515
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
516 517 518 519
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext,
                          paddle::platform::float16>);
Y
Yu Yang 已提交
520
#endif