matmul_op.cc 16.3 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Y
Yu Yang 已提交
16
#include <utility>
17
#include <vector>
Y
Yu Yang 已提交
18 19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
M
Markus Kliegl 已提交
21 22 23

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
24 25 26 27
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
28
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
29 30 31 32 33 34 35 36 37 38
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
39
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
49 50
  void Compute(const framework::ExecutionContext &context) const override {
    auto &x =
Y
Yu Yang 已提交
51
        detail::Ref(context.Input<framework::Tensor>("X"), "Cannot find X");
Y
yuyang18 已提交
52
    auto &y =
Y
Yu Yang 已提交
53
        detail::Ref(context.Input<framework::Tensor>("Y"), "Cannot find Y");
Y
yuyang18 已提交
54
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67
    out->mutable_data<T>(context.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
    auto mat_dim_b = math::CreateMatrixDescriptor(
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, T(1), out, T(0));
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
68
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
69 70 71 72 73 74 75 76 77 78 79 80
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
81 82
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
83 84 85 86 87 88 89 90 91 92 93
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
94

Y
Yu Yang 已提交
95 96 97 98 99 100 101 102 103 104
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
Y
yuyang18 已提交
105
    framework::Tensor *x, const math::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
133 134 135
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
Y
Yu Yang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
180 181 182 183
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
Y
Yu Yang 已提交
184 185 186 187 188 189 190
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, T(1), out, T(0));
  }

Y
yuyang18 已提交
191 192 193
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
Y
Yu Yang 已提交
194
                     bool trans_b, bool is_fold_init_dims_b,
Y
yuyang18 已提交
195
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
196 197 198 199 200 201
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
202
      auto &ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
203 204 205 206 207 208 209 210 211 212
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

Y
yuyang18 已提交
213
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
214 215 216 217
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
218 219
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
266 267 268 269 270 271

class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
272
  void InferShape(framework::InferShapeContext *context) const override {
M
Markus Kliegl 已提交
273 274 275 276 277 278 279 280 281 282
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasInput("Y"),
                   "Input(Y) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasOutput("Out"),
                   "Output(Out) of MatMulOp should not be null.");

    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");

Y
Yu Yang 已提交
283 284
    auto mat_dim_x =
        math::CreateMatrixDescriptor(RowMatrixFromVector(dim_x), 0,
Y
Yu Yang 已提交
285
                                     context->Attrs().Get<bool>("transpose_X"));
Y
Yu Yang 已提交
286 287
    auto mat_dim_y =
        math::CreateMatrixDescriptor(ColumnMatrixFromVector(dim_y), 0,
Y
Yu Yang 已提交
288
                                     context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
289

Y
Yu Yang 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303
    PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_);
    PADDLE_ENFORCE(mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
                   mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0);
    std::vector<int64_t> dim_out;
    if (mat_dim_x.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_x);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
      dim_out[dim_out.size() - 1] = mat_dim_y.width_;
    } else if (mat_dim_y.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_y);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
      dim_out[dim_out.size() - 1] = mat_dim_y.width_;
    } else {
      dim_out = {mat_dim_x.height_, mat_dim_y.width_};
M
Markus Kliegl 已提交
304 305
    }

Y
Yu Yang 已提交
306 307 308
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
309 310
    }

Y
Yu Yang 已提交
311 312
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
313 314
    }

Y
Yu Yang 已提交
315 316
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
317 318 319 320 321 322 323 324
    }
    context->SetOutputDim("Out", framework::make_ddim(dim_out));
    context->ShareLoD("X", /*->*/ "Out");
  }
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
325
  void Make() override {
M
Markus Kliegl 已提交
326 327 328 329 330 331 332 333 334 335 336 337
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
    AddComment(R"DOC(
K
kexinzhao 已提交
338 339 340 341
MatMul Operator.


This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355
over the last two dimensions of the input tensors `X` and `Y`.

If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.

Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
356
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
M
Markus Kliegl 已提交
357 358 359

The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
360 361
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
362
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
363
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
364 365 366
- We add `transpose_X` and `transpose_Y` flags.

Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
367 368
or not. But the output only shares the LoD information with input `X`.

M
Markus Kliegl 已提交
369 370 371 372 373 374 375 376 377
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
378
  void InferShape(framework::InferShapeContext *context) const override {
M
Markus Kliegl 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    PADDLE_ENFORCE(context->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(context->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

Y
Yu Yang 已提交
398 399 400 401 402 403
class MatMulOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
Y
yuyang18 已提交
404
    auto *retv = new framework::OpDesc();
Y
Yu Yang 已提交
405 406 407 408 409 410 411 412 413 414
    retv->SetType("matmul_grad");
    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    retv->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(retv);
  }
};
M
Markus Kliegl 已提交
415 416 417 418
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
419
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
Y
Yu Yang 已提交
420
                  ops::MatMulOpGradMaker);
421
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad);
M
Markus Kliegl 已提交
422
REGISTER_OP_CPU_KERNEL(
Y
yuyang18 已提交
423 424 425 426
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::float16>);
Q
QI JUN 已提交
427 428
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
429 430 431 432
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::float16>);
Y
Yu Yang 已提交
433 434 435

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
Y
yuyang18 已提交
436 437 438 439
    matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>);
Y
Yu Yang 已提交
440 441
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
442 443 444 445
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext,
                          paddle::platform::float16>);
Y
Yu Yang 已提交
446
#endif