Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
fcd31d61
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fcd31d61
编写于
5月 08, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Follow comments and polish code names
上级
0a13d3c6
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
323 addition
and
292 deletion
+323
-292
paddle/fluid/operators/math/blas.cc
paddle/fluid/operators/math/blas.cc
+13
-21
paddle/fluid/operators/math/blas.h
paddle/fluid/operators/math/blas.h
+35
-2
paddle/fluid/operators/matmul_op.cc
paddle/fluid/operators/matmul_op.cc
+275
-5
paddle/fluid/operators/matmul_op.cu.cc
paddle/fluid/operators/matmul_op.cu.cc
+0
-22
paddle/fluid/operators/matmul_op.h
paddle/fluid/operators/matmul_op.h
+0
-242
未找到文件。
paddle/fluid/operators/math/blas.cc
浏览文件 @
fcd31d61
...
...
@@ -18,34 +18,26 @@
namespace
paddle
{
namespace
operators
{
namespace
math
{
MatDescriptor
GetMatDim
(
const
framework
::
DDim
&
dim
,
int
num_flatten_cols
,
bool
trans
)
{
MatDescriptor
CreateMatrixDescriptor
(
const
framework
::
DDim
&
tensor_dim
,
int
num_flatten_cols
,
bool
trans
)
{
PADDLE_ENFORCE_GT
(
tensor_dim
.
size
(),
1
);
MatDescriptor
retv
;
if
(
num_flatten_cols
>
1
)
{
auto
flatten_dim
=
framework
::
flatten_to_2d
(
dim
,
num_flatten_cols
);
auto
flatten_dim
=
framework
::
flatten_to_2d
(
tensor_
dim
,
num_flatten_cols
);
retv
.
height_
=
flatten_dim
[
0
];
retv
.
width_
=
flatten_dim
[
1
];
}
else
{
if
(
dim
.
size
()
==
1
)
{
retv
.
height_
=
1
;
retv
.
width_
=
dim
[
0
];
}
else
if
(
dim
.
size
()
==
2
)
{
retv
.
height_
=
dim
[
0
];
retv
.
width_
=
dim
[
1
];
if
(
tensor_dim
.
size
()
==
2
)
{
retv
.
height_
=
tensor_dim
[
0
];
retv
.
width_
=
tensor_dim
[
1
];
}
else
{
if
(
dim
.
size
()
==
3
)
{
retv
.
batch_size_
=
dim
[
0
];
retv
.
height_
=
dim
[
1
];
retv
.
width_
=
dim
[
2
];
}
else
{
auto
dim_vec
=
framework
::
vectorize
(
dim
);
retv
.
batch_size_
=
1
;
for
(
size_t
i
=
0
;
i
<
dim_vec
.
size
()
-
2
;
++
i
)
{
retv
.
batch_size_
*=
dim_vec
[
i
];
retv
.
height_
=
dim_vec
[
dim_vec
.
size
()
-
2
];
retv
.
width_
=
dim_vec
[
dim_vec
.
size
()
-
1
];
}
auto
dim_vec
=
framework
::
vectorize
(
tensor_dim
);
retv
.
batch_size_
=
1
;
for
(
size_t
i
=
0
;
i
<
dim_vec
.
size
()
-
2
;
++
i
)
{
retv
.
batch_size_
*=
dim_vec
[
i
];
}
retv
.
height_
=
dim_vec
[
dim_vec
.
size
()
-
2
];
retv
.
width_
=
dim_vec
[
dim_vec
.
size
()
-
1
];
retv
.
stride_
=
retv
.
height_
*
retv
.
width_
;
}
}
...
...
paddle/fluid/operators/math/blas.h
浏览文件 @
fcd31d61
...
...
@@ -46,6 +46,25 @@ namespace paddle {
namespace
operators
{
namespace
math
{
/**
* Matrix Descriptor of a memory buffer.
*
* It is used for Blas::MatMul. MatMul operator can be batched.
* if Mat A is [BatchSize, H, W], Mat B is [BatchSize, H, W]. It will be a
* `batch_size` times of GEMM. The batched GEMM could be faster base on the
* implementation of the blas library. The batch size could be zero. If any
* matrix of `matmul` has a batch size, the will be a batched GEMM, too. e.g.,
* Mat A is [BatchSize, H1, W2], and Mat B [H2, W2], The result matrix wil be
* [BatchSize, H1, W2]
*
* The boolean flag, `trans`, describe the memory is the transpose of matrix or
* not. If the trans is true, the last two dims of matrix are transposed. The
* memory layout of the matrix is [Width, Height] or [BatchSize, Width, Height].
*
* The MatDescriptor is not only the dimension or shape of a matrix, it also
* contains the layout, stride of matrix. It is clearer to have a structure than
* reuse `DDim`.
*/
struct
MatDescriptor
{
int64_t
height_
;
int64_t
width_
;
...
...
@@ -54,8 +73,22 @@ struct MatDescriptor {
bool
trans_
;
};
extern
MatDescriptor
GetMatDim
(
const
framework
::
DDim
&
tensor
,
int
num_flatten_cols
,
bool
trans
);
/**
* Create Matrix Descriptor from a tensor dim, num_flatten_cols, and transpose
* flag
*
* @param tensor_dim: The dimension of the tensor. The rank of this dimension
* must larger than 1.
*
* @param num_flatten_cols: Reshape a tensor to a matrix. The matrix's first
* dimension(column length) will be the product of tensor's first `num_col_dims`
* dimensions. If num_flatten_cols is zero, the first N-2 dimension will be the
* batch_size of descriptor.
*
* @param trans: True if the matrix is transposed.
*/
extern
MatDescriptor
CreateMatrixDescriptor
(
const
framework
::
DDim
&
tensor_dim
,
int
num_flatten_cols
,
bool
trans
);
template
<
typename
DeviceContext
>
class
Blas
{
...
...
paddle/fluid/operators/matmul_op.cc
浏览文件 @
fcd31d61
...
...
@@ -12,14 +12,257 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/matmul_op.h"
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
/**
* Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
* original x_dim is returned.
*/
static
framework
::
DDim
RowMatrixFromVector
(
const
framework
::
DDim
&
x_dim
)
{
if
(
x_dim
.
size
()
>
1
)
{
return
x_dim
;
}
return
framework
::
make_ddim
({
1
,
x_dim
[
0
]});
}
/**
* Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
* original y_dim is returned.
*/
static
framework
::
DDim
ColumnMatrixFromVector
(
const
framework
::
DDim
&
y_dim
)
{
if
(
y_dim
.
size
()
>
1
)
{
return
y_dim
;
}
return
framework
::
make_ddim
({
y_dim
[
0
],
1
});
}
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
x
=
detail
::
Ref
(
context
.
Input
<
framework
::
Tensor
>
(
"X"
),
"Cannot find X"
);
auto
&
y
=
detail
::
Ref
(
context
.
Input
<
framework
::
Tensor
>
(
"Y"
),
"Cannot find Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
auto
mat_dim_a
=
math
::
CreateMatrixDescriptor
(
RowMatrixFromVector
(
x
.
dims
()),
0
,
context
.
Attr
<
bool
>
(
"transpose_X"
));
auto
mat_dim_b
=
math
::
CreateMatrixDescriptor
(
ColumnMatrixFromVector
(
y
.
dims
()),
0
,
context
.
Attr
<
bool
>
(
"transpose_Y"
));
blas
.
MatMul
(
x
,
mat_dim_a
,
y
,
mat_dim_b
,
T
(
1
),
out
,
T
(
0
));
}
};
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static
framework
::
Tensor
FoldInitDims
(
const
framework
::
Tensor
&
input
)
{
auto
output
=
input
;
auto
in_dims
=
input
.
dims
();
if
(
in_dims
.
size
()
==
3
)
{
output
.
Resize
({
in_dims
[
0
]
*
in_dims
[
1
],
in_dims
[
2
]});
}
return
output
;
}
// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template
<
typename
DeviceContext
,
typename
T
>
static
framework
::
Tensor
FoldHeadAndLastDims
(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
)
{
auto
in_dims
=
input
.
dims
();
if
(
in_dims
.
size
()
!=
3
)
{
return
input
;
}
framework
::
Tensor
output
;
output
.
Resize
({
in_dims
[
1
],
in_dims
[
0
],
in_dims
[
2
]});
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
axis
=
{
1
,
0
,
2
};
math
::
Transpose
<
DeviceContext
,
T
,
3
>
trans
;
trans
(
context
,
input
,
&
output
,
axis
);
output
.
Resize
({
in_dims
[
1
],
in_dims
[
0
]
*
in_dims
[
2
]});
using
framework
::
Tensor
;
return
output
;
}
/**
* Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
*
* The shape would be [BatchSize, H, W] or [H, W].
* If transposed, `H,W` will be swapped.
*/
static
void
ReshapeTensorIntoMatrixSequence
(
framework
::
Tensor
*
x
,
const
math
::
MatDescriptor
&
descriptor
)
{
int64_t
h
,
w
;
h
=
descriptor
.
height_
;
w
=
descriptor
.
width_
;
if
(
descriptor
.
trans_
)
{
std
::
swap
(
w
,
h
);
}
if
(
descriptor
.
batch_size_
)
{
x
->
Resize
({
descriptor
.
batch_size_
,
h
,
w
});
}
else
{
x
->
Resize
({
h
,
w
});
}
}
/**
* Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
* Out = matmul(x, y)
*
* This method will first calculate X,Y matrix sequence, and then calculate
* the out shape.
*
* Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
* The out = [BatchSize, H1, W2]
*
* If there is no batch size in `X` and `Y`, the out will be [H1, W2]
* If any of `X` and `Y` has batch size BatchSize, the out will have the
* BatchSize.
*/
static
void
ReshapeXYOutIntoMatrixSequence
(
framework
::
Tensor
*
x
,
framework
::
Tensor
*
y
,
framework
::
Tensor
*
out
,
bool
trans_x
,
bool
trans_y
)
{
auto
x_dim
=
RowMatrixFromVector
(
x
->
dims
());
auto
y_dim
=
ColumnMatrixFromVector
(
y
->
dims
());
auto
mat_dim_x
=
math
::
CreateMatrixDescriptor
(
x_dim
,
0
,
trans_x
);
auto
mat_dim_y
=
math
::
CreateMatrixDescriptor
(
y_dim
,
0
,
trans_y
);
if
(
mat_dim_x
.
batch_size_
==
0
&&
mat_dim_y
.
batch_size_
==
0
)
{
out
->
Resize
({
mat_dim_x
.
height_
,
mat_dim_y
.
width_
});
}
else
{
out
->
Resize
({
std
::
max
(
mat_dim_x
.
batch_size_
,
mat_dim_y
.
batch_size_
),
mat_dim_x
.
height_
,
mat_dim_y
.
width_
});
}
ReshapeTensorIntoMatrixSequence
(
x
,
mat_dim_x
);
ReshapeTensorIntoMatrixSequence
(
y
,
mat_dim_y
);
}
// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False | True | False | True
// transpose_Y | False | False | True | True
// -----------+----------+----------+----------+-----------
// dX = | dOut Y^T | Y dOut^T | dOut Y | Y^T dOut^T
// dY = | X^T dOut | X dOut | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
// dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
MatMul
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
framework
::
Tensor
*
out
)
const
{
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
auto
mat_dim_a
=
math
::
CreateMatrixDescriptor
(
a
.
dims
(),
0
,
trans_a
);
auto
mat_dim_b
=
math
::
CreateMatrixDescriptor
(
b
.
dims
(),
0
,
trans_b
);
blas
.
MatMul
(
a
,
mat_dim_a
,
b
,
mat_dim_b
,
T
(
1
),
out
,
T
(
0
));
}
void
CalcInputGrad
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
bool
is_fold_init_dims_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
bool
is_fold_init_dims_b
,
framework
::
Tensor
*
out
)
const
{
if
(
out
==
nullptr
)
return
;
bool
need_combine
=
(
a
.
dims
().
size
()
==
3
||
b
.
dims
().
size
()
==
3
)
&&
out
->
dims
().
size
()
==
2
;
if
(
!
need_combine
)
{
MatMul
(
context
,
a
,
trans_a
,
b
,
trans_b
,
out
);
}
else
{
auto
&
ctx
=
context
.
template
device_context
<
DeviceContext
>();
MatMul
(
context
,
is_fold_init_dims_a
?
FoldInitDims
(
a
)
:
FoldHeadAndLastDims
<
DeviceContext
,
T
>
(
ctx
,
a
),
trans_a
,
is_fold_init_dims_b
?
FoldInitDims
(
b
)
:
FoldHeadAndLastDims
<
DeviceContext
,
T
>
(
ctx
,
b
),
trans_b
,
out
);
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
x
=
*
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
y
=
*
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
dout
=
*
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
bool
transpose_x
=
context
.
Attr
<
bool
>
(
"transpose_X"
);
bool
transpose_y
=
context
.
Attr
<
bool
>
(
"transpose_Y"
);
ReshapeXYOutIntoMatrixSequence
(
&
x
,
&
y
,
&
dout
,
transpose_x
,
transpose_y
);
framework
::
DDim
dx_dims
;
if
(
dx
)
{
dx_dims
=
dx
->
dims
();
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
x
.
dims
());
}
}
framework
::
DDim
dy_dims
;
if
(
dy
)
{
dy_dims
=
dy
->
dims
();
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
y
.
dims
());
}
}
if
(
transpose_x
&&
transpose_y
)
{
CalcInputGrad
(
context
,
y
,
true
,
true
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
context
,
dout
,
true
,
true
,
x
,
true
,
false
,
dy
);
}
else
if
(
transpose_x
)
{
CalcInputGrad
(
context
,
y
,
false
,
false
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
context
,
x
,
false
,
false
,
dout
,
false
,
true
,
dy
);
}
else
if
(
transpose_y
)
{
CalcInputGrad
(
context
,
dout
,
false
,
false
,
y
,
false
,
true
,
dx
);
CalcInputGrad
(
context
,
dout
,
true
,
true
,
x
,
false
,
true
,
dy
);
}
else
{
CalcInputGrad
(
context
,
dout
,
false
,
false
,
y
,
true
,
false
,
dx
);
CalcInputGrad
(
context
,
x
,
true
,
true
,
dout
,
false
,
true
,
dy
);
}
if
(
dx
)
{
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
dx_dims
);
}
}
if
(
dy
)
{
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
dy_dims
);
}
}
}
};
class
MatMulOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
@@ -37,9 +280,11 @@ class MatMulOp : public framework::OperatorWithKernel {
auto
dim_x
=
context
->
GetInputDim
(
"X"
);
auto
dim_y
=
context
->
GetInputDim
(
"Y"
);
auto
mat_dim_x
=
math
::
GetMatDim
(
GetXDim
(
dim_x
),
0
,
auto
mat_dim_x
=
math
::
CreateMatrixDescriptor
(
RowMatrixFromVector
(
dim_x
),
0
,
context
->
Attrs
().
Get
<
bool
>
(
"transpose_X"
));
auto
mat_dim_y
=
math
::
GetMatDim
(
GetYDim
(
dim_y
),
0
,
auto
mat_dim_y
=
math
::
CreateMatrixDescriptor
(
ColumnMatrixFromVector
(
dim_y
),
0
,
context
->
Attrs
().
Get
<
bool
>
(
"transpose_Y"
));
PADDLE_ENFORCE_EQ
(
mat_dim_x
.
width_
,
mat_dim_y
.
height_
);
...
...
@@ -151,15 +396,40 @@ class MatMulOpGrad : public framework::OperatorWithKernel {
}
};
class
MatMulOpGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
retv
=
new
framework
::
OpDesc
();
retv
->
SetType
(
"matmul_grad"
);
retv
->
SetInput
(
"X"
,
Input
(
"X"
));
retv
->
SetInput
(
"Y"
,
Input
(
"Y"
));
retv
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
retv
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
retv
->
SetOutput
(
framework
::
GradVarName
(
"Y"
),
InputGrad
(
"Y"
));
retv
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
retv
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
matmul
,
ops
::
MatMulOp
,
ops
::
MatMulOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
MatMulOpGradMaker
);
REGISTER_OPERATOR
(
matmul_grad
,
ops
::
MatMulOpGrad
);
REGISTER_OP_CPU_KERNEL
(
matmul
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
matmul_grad
,
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL
(
matmul
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
matmul_grad
,
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
#endif
paddle/fluid/operators/matmul_op.cu.cc
已删除
100644 → 0
浏览文件 @
0a13d3c6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/matmul_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
matmul
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
matmul_grad
,
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
paddle/fluid/operators/matmul_op.h
已删除
100644 → 0
浏览文件 @
0a13d3c6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <functional>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
inline
framework
::
DDim
GetXDim
(
const
framework
::
DDim
&
x_dim
)
{
if
(
x_dim
.
size
()
>
1
)
{
return
x_dim
;
}
return
framework
::
make_ddim
({
1
,
x_dim
[
0
]});
}
inline
framework
::
DDim
GetYDim
(
const
framework
::
DDim
&
y_dim
)
{
if
(
y_dim
.
size
()
>
1
)
{
return
y_dim
;
}
return
framework
::
make_ddim
({
y_dim
[
0
],
1
});
}
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
x
=
detail
::
Ref
(
context
.
Input
<
framework
::
Tensor
>
(
"X"
),
"Cannot find X"
);
auto
&
y
=
detail
::
Ref
(
context
.
Input
<
framework
::
Tensor
>
(
"Y"
),
"Cannot find Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
auto
mat_dim_a
=
math
::
GetMatDim
(
GetXDim
(
x
.
dims
()),
0
,
context
.
Attr
<
bool
>
(
"transpose_X"
));
auto
mat_dim_b
=
math
::
GetMatDim
(
GetYDim
(
y
.
dims
()),
0
,
context
.
Attr
<
bool
>
(
"transpose_Y"
));
blas
.
MatMul
(
x
,
mat_dim_a
,
y
,
mat_dim_b
,
T
(
1
),
out
,
T
(
0
));
}
};
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
inline
framework
::
Tensor
CombineBatchAndM
(
const
framework
::
Tensor
&
input
)
{
auto
output
=
input
;
auto
in_dims
=
input
.
dims
();
if
(
in_dims
.
size
()
==
3
)
{
output
.
Resize
({
in_dims
[
0
]
*
in_dims
[
1
],
in_dims
[
2
]});
}
return
output
;
}
// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template
<
typename
DeviceContext
,
typename
T
>
inline
framework
::
Tensor
CombineBatchAndN
(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
)
{
auto
in_dims
=
input
.
dims
();
if
(
in_dims
.
size
()
!=
3
)
{
return
input
;
}
framework
::
Tensor
output
;
output
.
Resize
({
in_dims
[
1
],
in_dims
[
0
],
in_dims
[
2
]});
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
axis
=
{
1
,
0
,
2
};
math
::
Transpose
<
DeviceContext
,
T
,
3
>
trans
;
trans
(
context
,
input
,
&
output
,
axis
);
output
.
Resize
({
in_dims
[
1
],
in_dims
[
0
]
*
in_dims
[
2
]});
return
output
;
}
inline
void
NormalizeTensorShape
(
framework
::
Tensor
*
x
,
const
math
::
MatDescriptor
&
mat_dim_x
)
{
int64_t
h
,
w
;
h
=
mat_dim_x
.
height_
;
w
=
mat_dim_x
.
width_
;
if
(
mat_dim_x
.
trans_
)
{
std
::
swap
(
w
,
h
);
}
if
(
mat_dim_x
.
batch_size_
)
{
x
->
Resize
({
mat_dim_x
.
batch_size_
,
h
,
w
});
}
else
{
x
->
Resize
({
h
,
w
});
}
}
inline
void
NormalizeXYOutTensorShape
(
framework
::
Tensor
*
x
,
framework
::
Tensor
*
y
,
framework
::
Tensor
*
out
,
bool
trans_a
,
bool
trans_b
)
{
auto
x_dim
=
GetXDim
(
x
->
dims
());
auto
y_dim
=
GetYDim
(
y
->
dims
());
auto
mat_dim_x
=
math
::
GetMatDim
(
x_dim
,
0
,
trans_a
);
auto
mat_dim_y
=
math
::
GetMatDim
(
y_dim
,
0
,
trans_b
);
if
(
mat_dim_x
.
batch_size_
==
0
&&
mat_dim_y
.
batch_size_
==
0
)
{
out
->
Resize
({
mat_dim_x
.
height_
,
mat_dim_y
.
width_
});
}
else
{
out
->
Resize
({
std
::
max
(
mat_dim_x
.
batch_size_
,
mat_dim_y
.
batch_size_
),
mat_dim_x
.
height_
,
mat_dim_y
.
width_
});
}
NormalizeTensorShape
(
x
,
mat_dim_x
);
NormalizeTensorShape
(
y
,
mat_dim_y
);
}
// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False | True | False | True
// transpose_Y | False | False | True | True
// -----------+----------+----------+----------+-----------
// dX = | dOut Y^T | Y dOut^T | dOut Y | Y^T dOut^T
// dY = | X^T dOut | X dOut | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
// dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
MatMul
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
framework
::
Tensor
*
out
)
const
{
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
auto
mat_dim_a
=
math
::
GetMatDim
(
a
.
dims
(),
0
,
trans_a
);
auto
mat_dim_b
=
math
::
GetMatDim
(
b
.
dims
(),
0
,
trans_b
);
blas
.
MatMul
(
a
,
mat_dim_a
,
b
,
mat_dim_b
,
T
(
1
),
out
,
T
(
0
));
}
void
CalcInputGrad
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
bool
is_combine_m_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
bool
is_combine_m_b
,
framework
::
Tensor
*
out
)
const
{
if
(
out
==
nullptr
)
return
;
bool
need_combine
=
(
a
.
dims
().
size
()
==
3
||
b
.
dims
().
size
()
==
3
)
&&
out
->
dims
().
size
()
==
2
;
if
(
!
need_combine
)
{
MatMul
(
context
,
a
,
trans_a
,
b
,
trans_b
,
out
);
}
else
{
auto
&
ctx
=
context
.
template
device_context
<
DeviceContext
>();
MatMul
(
context
,
is_combine_m_a
?
CombineBatchAndM
(
a
)
:
CombineBatchAndN
<
DeviceContext
,
T
>
(
ctx
,
a
),
trans_a
,
is_combine_m_b
?
CombineBatchAndM
(
b
)
:
CombineBatchAndN
<
DeviceContext
,
T
>
(
ctx
,
b
),
trans_b
,
out
);
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
x
=
*
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
y
=
*
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
dout
=
*
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
bool
transpose_x
=
context
.
Attr
<
bool
>
(
"transpose_X"
);
bool
transpose_y
=
context
.
Attr
<
bool
>
(
"transpose_Y"
);
NormalizeXYOutTensorShape
(
&
x
,
&
y
,
&
dout
,
transpose_x
,
transpose_y
);
framework
::
DDim
dx_dims
;
if
(
dx
)
{
dx_dims
=
dx
->
dims
();
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
x
.
dims
());
}
}
framework
::
DDim
dy_dims
;
if
(
dy
)
{
dy_dims
=
dy
->
dims
();
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
y
.
dims
());
}
}
if
(
transpose_x
&&
transpose_y
)
{
CalcInputGrad
(
context
,
y
,
true
,
true
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
context
,
dout
,
true
,
true
,
x
,
true
,
false
,
dy
);
}
else
if
(
transpose_x
&&
!
transpose_y
)
{
CalcInputGrad
(
context
,
y
,
false
,
false
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
context
,
x
,
false
,
false
,
dout
,
false
,
true
,
dy
);
}
else
if
(
!
transpose_x
&&
transpose_y
)
{
CalcInputGrad
(
context
,
dout
,
false
,
false
,
y
,
false
,
true
,
dx
);
CalcInputGrad
(
context
,
dout
,
true
,
true
,
x
,
false
,
true
,
dy
);
}
else
{
CalcInputGrad
(
context
,
dout
,
false
,
false
,
y
,
true
,
false
,
dx
);
CalcInputGrad
(
context
,
x
,
true
,
true
,
dout
,
false
,
true
,
dy
);
}
if
(
dx
)
{
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
dx_dims
);
}
}
if
(
dy
)
{
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
dy_dims
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录