qat.py 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
from paddle.fluid import dygraph, core, framework, unique_name
24
from paddle.fluid.executor import Executor, global_scope
25 26
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
27 28
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
29
from paddle.fluid.log_helper import get_logger
30
from .. import quantization_pass
31
from . import quant_nn
C
cc 已提交
32
from . import utils
33

C
cc 已提交
34
__all__ = ['ImperativeQuantAware']
35 36 37 38 39 40 41

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class ImperativeQuantAware(object):
    """
C
cc 已提交
42
    Applying quantization aware training (QAT) to dgraph model.
43 44 45
    """

    def __init__(self,
C
cc 已提交
46
                 quantizable_layer_type=['Conv2D', 'Linear'],
47 48
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
C
cc 已提交
49 50
                 weight_bits=8,
                 activation_bits=8,
51
                 moving_rate=0.9,
52 53 54 55
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
56
        """
57 58 59
        The constructor for ImperativeQuantAware.

        Args:
60 61
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
62
            weight_quantize_type(str): quantization type for weights,
63
                which supports 'abs_max' and 'channel_wise_abs_max'.
64 65
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
66 67 68 69 70
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
71 72
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
92 93 94
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
95 96 97 98 99
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
100 101 102
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
103 104 105
                activation and returns dequantized activation. 
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
106

107
        Note:
C
cc 已提交
108 109 110 111
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
112 113

        Examples 1:
114 115
        .. code-block:: python

116
            import paddle
117 118
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
119
            from paddle.vision.models \
120 121 122 123 124 125 126 127 128 129
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
130
            # The outscale of outputs in supportted layers would be calculated.
131 132 133 134 135 136
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
137
            imperative_qat.save_quantized_model(
138 139 140 141 142
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
186 187
        """
        super(ImperativeQuantAware, self).__init__()
H
huangxu96 已提交
188

C
cc 已提交
189 190 191 192 193 194 195 196 197 198 199
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
200
        }
C
cc 已提交
201 202 203

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

204
        self._quantize_outputs = ImperativeQuantizeOutputs()
205 206 207

    def quantize(self, model):
        """
C
cc 已提交
208 209 210 211 212
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
213 214 215 216 217 218

        Args:
            model(fluid.dygraph.Layer): the model to be quantized.
        Returns:
            None
        """
C
cc 已提交
219 220 221
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
        self._quantize_inputs.apply(model)
222
        self._quantize_outputs.apply(model)
C
cc 已提交
223 224

    def save_quantized_model(self, layer, path, input_spec=None, **config):
225 226
        self._quantize_outputs.save_quantized_model(layer, path, input_spec,
                                                    **config)
C
cc 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

    def __init__(self,
                 quantizable_layer_type=['Conv2D', 'Linear'],
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
        """
        The constructor for ImperativeQuantizeInputs. 

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()

        self._quantizable_layer_type = tuple(
254 255
            utils.quant_input_layers_map[layer]
            if layer in utils.quant_input_layers_map else layer
C
cc 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            for layer in quantizable_layer_type)
        for layer in self._quantizable_layer_type:
            assert not isinstance(layer, str), \
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
        assert weight_quantize_type in quantize_type, \
            "Unsupported weight_quantize_type: %s. It can only " \
            "be abs_max or moving_average_abs_max or " \
            "channel_wise_abs_max." % weight_quantize_type
        assert activation_quantize_type != 'channel_wise_abs_max' \
            and activation_quantize_type in quantize_type, \
            "Unsupported activation_quantize_type: %s. It can " \
            "only be abs_max or moving_average_abs_max now." \
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

308
        for name, layer in model.named_sublayers():
C
cc 已提交
309 310 311
            if not isinstance(layer, self._quantizable_layer_type) \
                or (hasattr(layer, "skip_quant") \
                    and layer.skip_quant == True):
312 313
                continue

C
cc 已提交
314
            # TODO(jc): optimize this module
315 316
            last_idx = 0
            idx = 0
317
            obj = model
318 319
            while idx < len(name):
                if (name[idx] == '.'):
C
cc 已提交
320
                    if hasattr(obj, name[last_idx:idx]):
321 322 323 324 325
                        obj = getattr(obj, name[last_idx:idx])
                        last_idx = idx + 1
                idx += 1
            target = name[last_idx:idx]

326
            quant_layer = self._get_input_quantized_layer(layer)
327 328
            setattr(obj, target, quant_layer)

329
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
330
        quant_layer_name = None
331
        for key, value in utils.quant_input_layers_map.items():
C
cc 已提交
332 333 334 335 336 337
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
338

339
        layer_with_weight = ['QuantizedConv2D', 'QuantizedLinear']
C
cc 已提交
340 341
        if quant_layer_name not in layer_with_weight:
            quant_layer_name = 'QuantizedNoweightLayer'
342

C
cc 已提交
343
        return quant_nn.__dict__[quant_layer_name](layer, **self._kwargs)
344

345

346 347 348 349 350
class ImperativeQuantizeOutputs(object):
    """
    Calculate the output scales for some layers.
    """

351
    def __init__(self, moving_rate=0.9):
352
        """
353
        The constructor for ImperativeQuantizeOutputs.
354 355

        Args:
C
cc 已提交
356 357
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
358
        """
359
        super(ImperativeQuantizeOutputs, self).__init__()
360 361
        self._moving_rate = moving_rate

C
cc 已提交
362
    def apply(self, model):
363
        """
364 365
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
366 367

        Args:
C
cc 已提交
368
            model(fluid.dygraph.Layer): The target model which would be
369
                calculate the output quantization scale.
370 371 372 373

        Returns:
            None
        """
C
cc 已提交
374 375
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        for name, layer in model.named_sublayers():
            if not self._is_target_layer(layer):
                continue

            # TODO(jc): optimize this module
            last_idx = 0
            idx = 0
            obj = model
            while idx < len(name):
                if (name[idx] == '.'):
                    if hasattr(obj, name[last_idx:idx]):
                        obj = getattr(obj, name[last_idx:idx])
                        last_idx = idx + 1
                idx += 1
            target = name[last_idx:idx]

            quant_layer = quant_nn.__dict__["QuantizedOutputLayer"](
                layer, self._moving_rate)
            setattr(obj, target, quant_layer)
396 397 398 399 400 401 402

    def save_quantized_model(self, layer, path, input_spec=None, **config):
        """
        Save the quantized model for the inference.

        Args:
            layer (Layer): The Layer to be saved.
403 404 405 406 407 408 409 410 411 412 413
            path (str): The path prefix to save model. The format is 
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
                InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
414
                The following options are currently supported:
415 416 417 418 419 420
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
                If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given
                ``output_spec`` list. 
421 422 423 424

        Returns:
            None
        """
425 426 427 428 429 430
        assert isinstance(layer, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

        paddle.jit.save(layer=layer, path=path, input_spec=input_spec, **config)

        is_dynamic_mode = False
431 432 433 434
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

435 436
        place = core.CPUPlace()
        scope = global_scope()
437 438 439
        exe = Executor(place)

        dirname = os.path.dirname(path)
440 441 442
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
443 444

        [infer_program, feed_target_names, fetch_targets] = (
445 446 447 448 449 450
            load_inference_model(
                dirname=dirname,
                executor=exe,
                model_filename=model_filename,
                params_filename=params_filename))

451
        self._save_output_scale(infer_program, scope)
452 453

        self._set_skip_quant_attr(infer_program)
G
guofei 已提交
454

455 456 457 458 459
        save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
460
            main_program=infer_program.clone(),
461 462 463
            model_filename=model_filename,
            params_filename=params_filename)

464 465 466
        if is_dynamic_mode:
            paddle.disable_static()

467
    def _is_target_layer(self, layer):
468
        """
469
        Whether the layer needs to calculate output scales.
470 471
        """
        return isinstance(layer, tuple(utils.quant_output_layers_map.values())) \
472
            or ('quantized' in layer.full_name() and \
473
                'quantized_noweight' not in layer.full_name())
C
cc 已提交
474

475
    def _save_output_scale(self, program, scope):
476
        """
477 478
        Save all output scales to the corresponding ops in static
        inference program and delete 'moving_average_abs_max_scale' ops.
479
        """
480 481 482 483 484 485
        for block in program.blocks:
            for op in block.ops:
                if op.type == "moving_average_abs_max_scale":
                    in_var_name = op.input('X')[0]
                    out_var_name = op.output('Out')[0]
                    out_scale_name = op.output('OutScale')[0]
486

487 488 489
                    out_scale = utils.load_variable_data(scope, out_scale_name)
                    previous_op = utils.find_previous_op(block, in_var_name)
                    previous_op._set_attr("out_threshold", float(out_scale))
C
cc 已提交
490

491 492 493
                    next_ops = utils.find_next_ops(block, out_var_name)
                    for next_op in next_ops:
                        next_op._rename_input(out_var_name, in_var_name)
C
cc 已提交
494

495
    def _set_skip_quant_attr(self, program):
496
        """
497
        Label the skip quantized ops.
498
        """
499 500 501 502
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
G
guofei 已提交
503 504 505 506 507 508 509 510 511 512 513

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
        target_op_types = ["conv2d", "depthwise_conv2d", "matmul"]
        if in_op.type not in target_op_types:
            return False

514
        previous_ops = [utils.find_previous_op(block, arg_name) \
G
guofei 已提交
515
            for arg_name in in_op.input_arg_names]
516 517
        return any(op is not None and op.type not in \
            utils.fake_quantize_dequantize_types for op in previous_ops)