qat.py 25.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
from paddle.fluid import dygraph, core, framework, unique_name
24
from paddle.fluid.executor import Executor
25 26
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
27 28
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
29 30
from paddle.fluid.log_helper import get_logger
from . import quant_nn
31
from .. import quantization_pass
C
cc 已提交
32
from . import utils
33

C
cc 已提交
34
__all__ = ['ImperativeQuantAware']
35 36 37 38 39 40 41

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class ImperativeQuantAware(object):
    """
C
cc 已提交
42
    Applying quantization aware training (QAT) to dgraph model.
43 44 45
    """

    def __init__(self,
C
cc 已提交
46
                 quantizable_layer_type=['Conv2D', 'Linear'],
47 48
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
C
cc 已提交
49 50
                 weight_bits=8,
                 activation_bits=8,
51
                 moving_rate=0.9,
52 53 54 55
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
56
        """
57 58 59
        The constructor for ImperativeQuantAware.

        Args:
60 61
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
62
            weight_quantize_type(str): quantization type for weights,
63
                which supports 'abs_max' and 'channel_wise_abs_max'.
64 65
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
66 67 68 69 70
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
71 72
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
92 93 94
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
95 96 97 98 99
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
100 101 102
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
103 104 105
                activation and returns dequantized activation. 
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
106

107
        Note:
C
cc 已提交
108 109 110 111
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
112 113

        Examples 1:
114 115
        .. code-block:: python

116
            import paddle
117 118
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
119
            from paddle.vision.models \
120 121 122 123 124 125 126 127 128 129
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
130
            # The outscale of outputs in supportted layers would be calculated.
131 132 133 134 135 136
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
137
            imperative_qat.save_quantized_model(
138 139 140 141 142
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
186 187
        """
        super(ImperativeQuantAware, self).__init__()
H
huangxu96 已提交
188

C
cc 已提交
189 190 191 192 193 194 195 196 197 198 199
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
200
        }
C
cc 已提交
201 202 203 204

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

        self._calc_output_scale = ImperativeCalcOutputScale()
205 206 207

    def quantize(self, model):
        """
C
cc 已提交
208 209 210 211 212
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
213 214 215 216 217 218

        Args:
            model(fluid.dygraph.Layer): the model to be quantized.
        Returns:
            None
        """
C
cc 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
        self._quantize_inputs.apply(model)
        self._calc_output_scale.apply(model)

    def save_quantized_model(self, layer, path, input_spec=None, **config):
        self._calc_output_scale.save_quantized_model(layer, path, input_spec,
                                                     **config)


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

    def __init__(self,
                 quantizable_layer_type=['Conv2D', 'Linear'],
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
        """
        The constructor for ImperativeQuantizeInputs. 

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()

        self._quantizable_layer_type = tuple(
254 255
            utils.supported_quant_layers_map[layer]
            if layer in utils.supported_quant_layers_map else layer
C
cc 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            for layer in quantizable_layer_type)
        for layer in self._quantizable_layer_type:
            assert not isinstance(layer, str), \
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
        assert weight_quantize_type in quantize_type, \
            "Unsupported weight_quantize_type: %s. It can only " \
            "be abs_max or moving_average_abs_max or " \
            "channel_wise_abs_max." % weight_quantize_type
        assert activation_quantize_type != 'channel_wise_abs_max' \
            and activation_quantize_type in quantize_type, \
            "Unsupported activation_quantize_type: %s. It can " \
            "only be abs_max or moving_average_abs_max now." \
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

308
        for name, layer in model.named_sublayers():
C
cc 已提交
309 310 311
            if not isinstance(layer, self._quantizable_layer_type) \
                or (hasattr(layer, "skip_quant") \
                    and layer.skip_quant == True):
312 313
                continue

C
cc 已提交
314
            # TODO(jc): optimize this module
315 316
            last_idx = 0
            idx = 0
317
            obj = model
318 319
            while idx < len(name):
                if (name[idx] == '.'):
C
cc 已提交
320
                    if hasattr(obj, name[last_idx:idx]):
321 322 323 324 325
                        obj = getattr(obj, name[last_idx:idx])
                        last_idx = idx + 1
                idx += 1
            target = name[last_idx:idx]

C
cc 已提交
326
            quant_layer = self._get_quantized_layer(layer)
G
guofei 已提交
327
            setattr(quant_layer, "layer_name", layer.full_name())
328 329
            setattr(obj, target, quant_layer)

C
cc 已提交
330 331
    def _get_quantized_layer(self, layer):
        quant_layer_name = None
332
        for key, value in utils.supported_quant_layers_map.items():
C
cc 已提交
333 334 335 336 337 338
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
339

340
        layer_with_weight = ['QuantizedConv2D', 'QuantizedLinear']
C
cc 已提交
341 342
        if quant_layer_name not in layer_with_weight:
            quant_layer_name = 'QuantizedNoweightLayer'
343

C
cc 已提交
344
        return quant_nn.__dict__[quant_layer_name](layer, **self._kwargs)
345

346

C
cc 已提交
347
class ImperativeCalcOutputScale(object):
348
    def __init__(self, moving_rate=0.9):
349
        """
C
cc 已提交
350
        Add the logic of calculating and setting output scales of some layers. 
351 352

        Args:
C
cc 已提交
353 354
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
355
        """
C
cc 已提交
356
        super(ImperativeCalcOutputScale, self).__init__()
357 358
        self._moving_rate = moving_rate
        self._register_hook_handle_list = []
G
guofei 已提交
359
        self._out_scale_dict = collections.OrderedDict()
360

C
cc 已提交
361
    def apply(self, model):
362
        """
C
cc 已提交
363 364
        Insert the `moving_average_abs_max_scale` op to calculate output 
        scale of specific layers in model.
365 366

        Args:
C
cc 已提交
367
            model(fluid.dygraph.Layer): The target model which would be
368
                calculate the output quantization scale.
369 370 371 372

        Returns:
            None
        """
C
cc 已提交
373 374
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
375
        for _, layer in model.named_sublayers():
C
cc 已提交
376
            if self._is_target_layer(layer):
377 378 379 380
                self._init_scale_params(layer)
                hook_handle = layer.register_forward_post_hook(
                    self._calc_output_scale_hook)
                self._register_hook_handle_list.append(hook_handle)
381 382 383 384 385 386 387

    def save_quantized_model(self, layer, path, input_spec=None, **config):
        """
        Save the quantized model for the inference.

        Args:
            layer (Layer): The Layer to be saved.
388 389 390 391 392 393 394 395 396 397 398
            path (str): The path prefix to save model. The format is 
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
                InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
399
                The following options are currently supported:
400 401 402 403 404 405
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
                If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given
                ``output_spec`` list. 
406 407 408 409 410

        Returns:
            None
        """

411 412 413 414
        assert isinstance(layer, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

        # remove handles and collect output scales
415
        with dygraph.guard():
416 417 418 419 420 421 422 423
            layer.eval()
            for handle in self._register_hook_handle_list:
                handle.remove()
            for _, sub_layer in layer.named_sublayers():
                if self._is_target_layer(sub_layer):
                    if hasattr(sub_layer, "layer_name"):
                        layer_name = sub_layer.layer_name
                    else:
424
                        layer_name = sub_layer.full_name()
425 426 427
                    if hasattr(sub_layer, "_quant_out_scale"):
                        self._out_scale_dict[layer_name] = float(
                            sub_layer._quant_out_scale)
428

429 430 431 432 433
        # save the quantized model that doesn't have output scales
        paddle.jit.save(layer=layer, path=path, input_spec=input_spec, **config)

        # load static model
        is_dynamic_mode = False
434 435 436 437
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

438 439
        place = core.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else core.CPUPlace()
440 441 442
        exe = Executor(place)

        dirname = os.path.dirname(path)
443 444 445
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
446 447 448 449 450 451 452
        [inference_program, feed_target_names, fetch_targets] = (
            load_inference_model(
                dirname=dirname,
                executor=exe,
                model_filename=model_filename,
                params_filename=params_filename))

453
        # set output scales to the static model
454
        check_behind_op = False
G
guofei 已提交
455
        op_count = 0
456 457 458
        ops_list = [key for key, _ in self._out_scale_dict.items()]
        if len(ops_list) == 0:
            warnings.warn(
459 460 461
                "Warning: No Layer of the model while to be saved contains "
                "the out_threshold attribute, so the generated inference "
                "model would not contain the out_threshold.")
462 463 464 465 466 467 468 469 470 471 472
        else:
            # Because the Layer in dygraph may correspond to multiple ops
            # in static program after being saved. To ensure correctness,
            # the outscale collected for output of dygraph Layer can only
            # be set to the last op in the corresponding ops in static program.
            #
            # We can judge the execution order of the ops which corresponding
            # to dygraph Layer by check_behind_op
            forward_op = None
            for block in inference_program.blocks:
                for op in block.ops:
473
                    if op.type in utils.op_real_in_out_name:
474 475
                        if op_count > len(ops_list):
                            warnings.warn(
476 477 478
                                "The number of Layer which has "
                                "out_threshold attribute should be bigger than "
                                "the op in inference model")
479 480 481 482 483 484 485 486 487 488 489
                            break
                        if check_behind_op:
                            check_behind_op = False
                            if op.type == "elementwise_add":
                                if self._is_op_matched(ops_list[op_count], op,
                                                       block):
                                    op._set_attr("out_threshold",
                                                 self._out_scale_dict[ops_list[
                                                     op_count]])
                                    op_count += 1
                                    forward_op = None
G
guofei 已提交
490 491
                                continue
                            else:
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
                                if forward_op is None:
                                    raise ValueError(
                                        "forward_op should not be None")
                                if self._is_op_matched(ops_list[op_count],
                                                       forward_op, block):
                                    forward_op._set_attr(
                                        "out_threshold", self._out_scale_dict[
                                            ops_list[op_count]])
                                    op_count += 1
                                    forward_op = None

                        if op.type in ["conv2d", "depthwise_conv2d", "matmul"]:
                            check_behind_op = True
                            forward_op = op
                            continue
                        if op_count >= len(ops_list):
                            warnings.warn(
                                "The number of Layer which has out_threshold attribute should be bigger than the op in inference model"
                            )
                            break
                        if self._is_op_matched(ops_list[op_count], op, block):
                            op._set_attr(
                                "out_threshold",
                                self._out_scale_dict[ops_list[op_count]])
                            op_count += 1
517

518
        # save the final quantized model that has output scales
519 520 521 522 523 524 525 526 527
        save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
            main_program=inference_program.clone(),
            model_filename=model_filename,
            params_filename=params_filename)

528 529 530
        if is_dynamic_mode:
            paddle.disable_static()

C
cc 已提交
531
    def _is_target_layer(self, layer):
532
        return isinstance(layer, utils.out_scale_layers_list) \
C
cc 已提交
533 534
            or 'quantized_' in layer.full_name()

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    def _init_scale_params(self, layer, name=None):
        """
        Init the scale params for calculating output scales and save them in the
        target layer.
        After the users define the dygraph model, the hooks for calculating output
        scales will not execute immediately. If the users load the checkpoint now,
        the scale params have not been created, so them cann't be loaded.
        Therefore, define the scale params in the beginning.
        """

        def _create_param(in_layer, first_name, last_name, dtype):
            prefix = '{}.{}'.format(first_name, last_name) \
                if first_name else 'outscale.{}'.format(last_name)
            attr = ParamAttr(
                name=unique_name.generate(prefix),
                initializer=Constant(1),
                trainable=False)
            param = in_layer.create_parameter(shape=[1], attr=attr, dtype=dtype)
            return param

C
cc 已提交
555 556 557
        dtype = layer._dtype if layer._dtype is not None else "float32"
        if dtype not in ["float32", "float64"]:
            return
558 559

        layer._quant_out_scale = _create_param(layer, name, "scale", dtype)
C
cc 已提交
560 561
        layer._quant_out_scale.stop_gradient = True

562
        layer._quant_out_state = _create_param(layer, name, "state", dtype)
C
cc 已提交
563 564
        layer._quant_out_state.stop_gradient = True

565
        layer._quant_out_accum = _create_param(layer, name, "accum", dtype)
C
cc 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        layer._quant_out_accum.stop_gradient = True

    # Judge whether the op in program matches the Layer in dynamic model
    def _is_op_matched(self, layer_name, op, block):
        output_var_names = quantization_pass._get_op_output_var_names(op)
        for output_var_name in output_var_names:
            output_var_tensor = block.var(output_var_name)
            if output_var_tensor.dtype not in [
                    core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32
            ]:
                return False

        # Because the naming styles of static and dynamic graph are different,
        # in order to avoid mistakes, we unify the name here.
        op_type = output_var_names[0].split(".")[0]
        op_type = op_type.rsplit("_", 1)[0]
        if op_type == 'depthwise_conv2d':
            op_type = 'conv2d'
        if 'prelu' in op_type:
            op_type = op_type.replace('prelu', 'p_re_lu')
        if 'relu' in op_type:
            op_type = op_type.replace('relu', 're_lu')
        return op_type in layer_name

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
    def _calc_output_scale_hook(self, layer, input, output):
        """
        Create the MovingAverageAbsMaxScale layer for the target layer if needed.
        Execute MovingAverageAbsMaxScale layer to calculate the output scale. 
        """
        assert isinstance(output, (core.VarBase, framework.Variable)), \
            "Multiple outputs are not currently supported in ImperativeOutScale."

        fp_types = [core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP64]
        if output.dtype in fp_types:
            if not hasattr(layer, "_out_scale"):
                self._out_scale = quant_nn.MovingAverageAbsMaxScale(
                    layer, output.name, self._moving_rate, output.dtype)
            # TODO (jc): consider the ops that have several outputs 
            self._out_scale(output)