qat.py 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import numpy as np
import sys
from paddle.fluid import dygraph
from paddle.fluid.dygraph.nn import Conv2D
from paddle.fluid.dygraph.nn import Linear
from paddle.fluid.log_helper import get_logger
from . import quant_nn

__all__ = ['ImperativeQuantAware']

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class ImperativeQuantAware(object):
    """
    Add the fake quant logic for given quantizable layers, namely add the quant_dequant
    computational logic both for activation inputs and weight inputs.
    """

    def __init__(self,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 moving_rate=0.9,
                 quantizable_layer_type=['Conv2D', 'Linear']):
        """
        The constructor for ImperativeQuantAware.

        Args:
            weight_bits(int): quantization bit number for weights,
                whereas the bias is not quantized.
            activation_bits(int): quantization bit number for activations.
            weight_quantize_type(str): quantization type for weights,
                which supports 'abs_max' now. The 'moving_average_abs_max'
                usually is not used for weights, since weights are fixed once the
                model is well trained.
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
                If using 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If using
                'moving_average_abs_max', the static quantization scale will be calculated
                during training and used in inference.
            moving_rate(float): the parameter for 'moving_average_abs_max' quantization.
            quantizable_op_type(list[str]): List the type of layers that will be quantized. 
                Default is ['Conv2D', 'Linear']. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.


        Examples:
        .. code-block:: python

            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
            from paddle.incubate.hapi.vision.models \
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                dirname="./resnet50_qat",
                model=model,
                input_shape=[(3, 224, 224)],
                input_dtype=['float32'],
                feed=[0],
                fetch=[0])
        """
        super(ImperativeQuantAware, self).__init__()
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._moving_rate = moving_rate

        quant_type = {'abs_max', 'moving_average_abs_max'}
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'moving_average_abs_max' now." %
                (str(activation_quantize_type)))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'moving_average_abs_max' now." %
                (str(weight_quantize_type)))
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type

        self._quant_layers_map = {'Conv2D': Conv2D, 'Linear': Linear}
        self._quantizable_layer_type = tuple(
            self._quant_layers_map[layer]
            if layer in self._quant_layers_map else layer
            for layer in quantizable_layer_type)
        for layer in self._quantizable_layer_type:
            assert not isinstance(
                layer, str), "{} is unspported to be quantized.".format(layer)

    def quantize(self, model):
        """
        According to weights' and activations' quantization types, the model will be added some fake
        quant ops, such as fake_quantize_dequantize_moving_average_abs_max, fake_quantize_dequantize_abs_max
        and so on.

        Args:
            model(fluid.dygraph.Layer): the model to be quantized.
        Returns:
            None
        """
        for name, layer in model.named_sublayers():
            if not isinstance(layer, self._quantizable_layer_type):
                continue

            scopes = name.split('.')
            target = scopes[-1]
            obj = model
            parent = model
            for i in range(len(scopes) - 1):
                obj = getattr(parent, scopes[i])
                parent = obj

            quant_layer = self._get_quantized_counterpart(layer)
            setattr(obj, target, quant_layer)

    def save_quantized_model(self,
                             dirname,
                             model,
                             input_shape,
                             input_dtype,
                             feed,
                             fetch,
                             append_batch_size=True):
        """
        Save the quantized model for the inference.

        Args:
            dirname (str): the directory to save the quantized model.
            model(fluid.dygraph.Layer): the quantized model to be saved.
            input_shape(list[tuple(int)]): The shape value for each input,
                e.g. [(3, 224, 224)].
            input_dtype(list[str]): The dtype value for each input,
                e.g. ['float32'].
            feed(list[int]): the indices of the input variables of the
                imperative functions which will be saved as input variables in
                inference model.
            fetch(list[int]): the indices of the returned variable of the
                imperative functions which will be saved as output variables in
                inference model.
            append_batch_size(bool, optional):
                If true, it prepends an extra axis to the input_shape, meanwhile,
                the input_shape shouldn't contain the batch size dimension.
                Otherwise, it just uses the input_shape. Default True.
        Returns:
            None
        """
        assert isinstance(
            input_shape, list), "The parameter `input_shape` shoubld be a list."
        assert isinstance(
            input_dtype, list), "The parameter `input_dtype` shoubld be a list."
        assert isinstance(feed, list), "The parameter `feed` shoubld be a list."
        assert isinstance(fetch,
                          list), "The parameter `fetch` shoubld be a list."
        assert len(input_shape) == len(
            input_dtype
        ), "The length of input_shape should be equal to  input_dtype's."
        assert len(input_dtype) == len(
            feed), "The length of input_shape should be equal to  feed's."

        prog_trans = dygraph.ProgramTranslator()
        with dygraph.guard():
            model.eval()
            input_vars = []
            for shape, dtype in zip(input_shape, input_dtype):
                raw_data = np.random.random(shape)
                input_data = raw_data[np.newaxis, :].astype(
                    dtype) if append_batch_size else raw_data.astype(dtype)
                input_var = dygraph.to_variable(input_data)
                input_vars.append(input_var)
204 205 206 207 208 209 210 211 212 213 214 215
            outputs = prog_trans.get_output(model.forward, model, *input_vars)
        input_spec = [input_vars[i] for i in feed]
        configs = dygraph.jit.SaveLoadConfig()
        configs.separate_params = True
        if not isinstance(outputs, (tuple, list)):
            outputs = [outputs]
        configs.output_spec = [outputs[i] for i in fetch]
        dygraph.jit.save(
            layer=model,
            model_path=dirname,
            input_spec=input_spec,
            configs=configs)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    def _get_quantized_counterpart(self, layer):
        quant_layers = tuple(self._quant_layers_map.values())
        quantized_counterpart = tuple('Quantized' + k
                                      for k in self._quant_layers_map.keys())

        predicate = lambda value: isinstance(layer, value)
        index_generator = (i for i, v in enumerate(quant_layers)
                           if predicate(v))

        try:
            index = next(index_generator)
        except StopIteration:
            _logger.fatal("The layer {} is unsupported to be quantized.".format(
                layer.full_name()))
            sys.exit(-1)

        quantized_layer = quant_nn.__dict__[quantized_counterpart[index]](
            layer, self._weight_bits, self._activation_bits, self._moving_rate,
            self._weight_quantize_type, self._activation_quantize_type)
        return quantized_layer