qat.py 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
from paddle.fluid import dygraph, core, framework, unique_name
24
from paddle.fluid.executor import Executor
25 26
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
27
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
28
from paddle.nn import Linear, Conv2D, Conv2DTranspose, MaxPool2D, MaxPool1D, BatchNorm1D, BatchNorm2D, BatchNorm3D, SyncBatchNorm
G
guofei 已提交
29
from paddle.fluid.dygraph.nn import BatchNorm, Pool2D
30
from paddle.fluid.io import load_inference_model, save_inference_model
31
from paddle.nn.layer.activation import ReLU, LeakyReLU, Sigmoid, ReLU6, Tanh, Softmax, PReLU, Swish
32 33
from paddle.fluid.log_helper import get_logger
from . import quant_nn
34
from .. import quantization_pass
35

36
__all__ = ['ImperativeQuantAware', 'ImperativeCalcOutScale']
37 38 39 40

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

41 42
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
43
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
44 45 46 47 48 49 50 51 52 53
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
    "prelu": [["X"], ["Out"]],
    "tanh": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
    "sigmoid": [["X"], ["Out"]],
54
    "swish": [["X"], ["Out"]],
55 56
}

57 58 59 60 61 62 63 64 65 66 67 68 69

class ImperativeQuantAware(object):
    """
    Add the fake quant logic for given quantizable layers, namely add the quant_dequant
    computational logic both for activation inputs and weight inputs.
    """

    def __init__(self,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 moving_rate=0.9,
70 71 72 73 74
                 quantizable_layer_type=['Conv2D', 'Linear'],
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
75
        r"""
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        The constructor for ImperativeQuantAware.

        Args:
            weight_bits(int): quantization bit number for weights,
                whereas the bias is not quantized.
            activation_bits(int): quantization bit number for activations.
            weight_quantize_type(str): quantization type for weights,
                which supports 'abs_max' now. The 'moving_average_abs_max'
                usually is not used for weights, since weights are fixed once the
                model is well trained.
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
                If using 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If using
                'moving_average_abs_max', the static quantization scale will be calculated
                during training and used in inference.
            moving_rate(float): the parameter for 'moving_average_abs_max' quantization.
93
            quantizable_layer_type(list[str]): List the type of layers that will be quantized. 
94 95
                Default is ['Conv2D', 'Linear']. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to preprocess
                weight before quantization. Using this can quickly test if user's
                preprocess method works or not. The input is non-quantized
                weight and function returns processed weight to be quantized.
                If None, the weight will be quantized directly. Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
                weight and returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
                activation and returns dequantized activation. If None, will use
                quantization op defined by 'activation_quantize_type'. Default is None.
118

119 120 121 122 123 124
        Note:
            If user sets attribute 'skip_quant' to a Layer that support dynamic quantization and sets
            it to true, the layer would not be quantized during training. If this attribute is not sets
            or the attribute is false, the Layer would be qunatized in training.

        Examples 1:
125 126
        .. code-block:: python

127
            import paddle
128 129
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
130
            from paddle.vision.models \
131 132 133 134 135 136 137 138 139 140
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
141
            # The outscale of outputs in supportted layers would be calculated.
142 143 144 145 146 147
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
148
            imperative_qat.save_quantized_model(
149 150 151 152 153
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
197 198 199 200 201
        """
        super(ImperativeQuantAware, self).__init__()
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._moving_rate = moving_rate
H
huangxu96 已提交
202 203
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
204

205 206 207 208
        self._weight_pre_layer = weight_preprocess_layer
        self._act_pre_layer = act_preprocess_layer
        self._weight_quant_layer = weight_quantize_layer
        self._act_quant_layer = act_quantize_layer
209
        self._out_scale = ImperativeCalcOutScale()
210 211 212 213 214 215 216 217 218

        t_check = lambda method: method is None or issubclass(method, dygraph.layers.Layer)
        assert t_check(
            self._weight_pre_layer), "weight_preprocess should be nn.Layer"
        assert t_check(self._act_pre_layer), "act_preprocess should be nn.Layer"
        assert t_check(
            self._weight_quant_layer), "weight_quantize should be nn.Layer"
        assert t_check(self._act_quant_layer), "act_quantize should be nn.Layer"

H
huangxu96 已提交
219 220 221 222 223 224
        quant_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }

        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
225 226 227 228 229 230 231 232
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'moving_average_abs_max' now." %
                (str(activation_quantize_type)))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be "
H
huangxu96 已提交
233 234
                "'abs_max' or 'moving_average_abs_max' or 'channel_wise_abs_max' now."
                % (str(weight_quantize_type)))
235

236 237 238 239 240 241 242 243 244 245 246
        self._quant_layers_map = {
            'Conv2D': Conv2D,
            'Linear': Linear,
            'Pool2D': Pool2D,
            'ReLU': ReLU,
            'LeakyReLU': LeakyReLU,
            'ReLU6': ReLU6,
            'Softmax': Softmax,
            'Tanh': Tanh,
            'Swish': Swish
        }
247 248 249 250 251 252 253 254 255 256 257 258
        self._quantizable_layer_type = tuple(
            self._quant_layers_map[layer]
            if layer in self._quant_layers_map else layer
            for layer in quantizable_layer_type)
        for layer in self._quantizable_layer_type:
            assert not isinstance(
                layer, str), "{} is unspported to be quantized.".format(layer)

    def quantize(self, model):
        """
        According to weights' and activations' quantization types, the model will be added some fake
        quant ops, such as fake_quantize_dequantize_moving_average_abs_max, fake_quantize_dequantize_abs_max
259
        and so on. At the same time, the out_scale value of outputs would be calculated.
260 261 262 263 264 265 266 267 268

        Args:
            model(fluid.dygraph.Layer): the model to be quantized.
        Returns:
            None
        """
        for name, layer in model.named_sublayers():
            if not isinstance(layer, self._quantizable_layer_type):
                continue
269 270 271
            if hasattr(layer, "skip_quant") and layer.skip_quant == True:
                continue

272 273
            last_idx = 0
            idx = 0
274 275
            obj = model
            parent = model
276 277 278 279 280 281 282 283 284 285

            while idx < len(name):
                if (name[idx] == '.'):
                    if hasattr(parent, name[last_idx:idx]):
                        obj = getattr(obj, name[last_idx:idx])
                        parent = obj
                        last_idx = idx + 1
                idx += 1
            target = name[last_idx:idx]

286
            quant_layer = self._get_quantized_counterpart(layer)
G
guofei 已提交
287
            setattr(quant_layer, "layer_name", layer.full_name())
288 289
            setattr(obj, target, quant_layer)

290 291
        self._out_scale.calc_out_scale(model)

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    def _get_quantized_counterpart(self, layer):
        quant_layers = tuple(self._quant_layers_map.values())
        quantized_counterpart = tuple('Quantized' + k
                                      for k in self._quant_layers_map.keys())

        predicate = lambda value: isinstance(layer, value)
        index_generator = (i for i, v in enumerate(quant_layers)
                           if predicate(v))

        try:
            index = next(index_generator)
        except StopIteration:
            _logger.fatal("The layer {} is unsupported to be quantized.".format(
                layer.full_name()))
            sys.exit(-1)

308 309 310 311 312 313
        layer_with_weight = ['QuantizedConv2D', 'QuantizedLinear']
        if quantized_counterpart[index] not in layer_with_weight:
            quant_layer_class_name = 'QuantizedNoweightLayer'
        else:
            quant_layer_class_name = quantized_counterpart[index]
        quantized_layer = quant_nn.__dict__[quant_layer_class_name](
314
            layer, self._weight_bits, self._activation_bits, self._moving_rate,
315 316 317
            self._weight_quantize_type, self._activation_quantize_type,
            self._weight_pre_layer, self._act_pre_layer,
            self._weight_quant_layer, self._act_quant_layer)
318
        return quantized_layer
319

320 321 322
    def save_quantized_model(self, layer, path, input_spec=None, **config):
        self._out_scale.save_quantized_model(layer, path, input_spec, **config)

323 324

class ImperativeCalcOutScale(object):
325
    def __init__(self, moving_rate=0.9):
326 327 328 329 330 331 332 333 334
        """
        Add the logic of calculating and setting output quantization scales of some layers.
        These output quantization scales may be used by tensorRT or some other inference engines.

        Args:
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        super(ImperativeCalcOutScale, self).__init__()
        self._moving_rate = moving_rate
335
        self._out_scale_layer_type_list = (
336 337
            BatchNorm, BatchNorm1D, BatchNorm2D, BatchNorm3D, Conv2D, LeakyReLU,
            Linear, PReLU, Pool2D, MaxPool1D, MaxPool2D, ReLU, ReLU6, Sigmoid,
338
            Softmax, SyncBatchNorm, Tanh, Swish)
339
        self._register_hook_handle_list = []
G
guofei 已提交
340
        self._out_scale_dict = collections.OrderedDict()
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    # Determine whether layer supports calculation out_scale
    def _is_matched_layer(self, layer):
        if not isinstance(layer, self._out_scale_layer_type_list):
            if 'quantized_' not in layer.full_name():
                return False
        return True

    # When inferenc model is saved, the logic in hook would not be executed
    # in program translation, so that some parameters can not created in
    # __init__, which would cause the model to fail to save. Therefore, the
    # parameters creation in the hook is advanced to be exected outside the hook.
    def _add_new_parameters(self, layer, name=None):
        dtype = layer._dtype if layer._dtype is not None else "float32"
        if dtype not in ["float32", "float64"]:
            return
        scale_prefix = '{}.scale'.format(name) if name else 'outscale.scale'
        scale_name = unique_name.generate(scale_prefix)
        scale_attr = ParamAttr(
            name=scale_name, initializer=Constant(1), trainable=False)
        layer._quant_out_scale = layer.create_parameter(
            shape=[1], attr=scale_attr, dtype=dtype)
        layer._quant_out_scale.stop_gradient = True

        state_prefix = "{}.state".format(name) if name else 'outscale.state'
        state_attr = ParamAttr(
            name=unique_name.generate(state_prefix),
            initializer=Constant(1),
            trainable=False)
        layer._quant_out_state = layer.create_parameter(
            shape=[1], attr=state_attr, dtype=dtype)
        layer._quant_out_state.stop_gradient = True

        accum_prefix = "{}.accum".format(name) if name else 'outscale.accum'
        accum_attr = ParamAttr(
            name=unique_name.generate(accum_prefix),
            initializer=Constant(1),
            trainable=False)
        layer._quant_out_accum = layer.create_parameter(
            shape=[1], attr=accum_attr, dtype=dtype)
        layer._quant_out_accum.stop_gradient = True

    # Judge whether the op in program matches the Layer in dynamic model
    def _is_op_matched(self, layer_name, op, block):
        output_var_names = quantization_pass._get_op_output_var_names(op)
        for output_var_name in output_var_names:
            output_var_tensor = block.var(output_var_name)
            if output_var_tensor.dtype not in [
                    core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32
            ]:
                return False

        # Because the naming styles of static and dynamic graph are different,
        # in order to avoid mistakes, we unify the name here.
        op_type = output_var_names[0].split(".")[0]
        op_type = op_type.rsplit("_", 1)[0]
        if op_type == 'depthwise_conv2d':
            op_type = 'conv2d'
        if 'prelu' in op_type:
            op_type = op_type.replace('prelu', 'p_re_lu')
        if 'relu' in op_type:
            op_type = op_type.replace('relu', 're_lu')
        return op_type in layer_name

405 406 407 408 409 410 411 412 413 414 415 416 417
    def calc_out_scale(self, model):
        """
        Insert the `moving_average_abs_max_scale` op to calculate output scale of Specific layers in model.

        Args:
            model(fluid.dygraph.Layer): The target model which would be calculate the output quantization scale.

        Returns:
            None
        """
        assert isinstance(
            model, dygraph.Layer), "model must be the instance of dygraph.Layer"
        for _, layer in model.named_sublayers():
418 419 420 421 422
            if self._is_matched_layer(layer):
                self._add_new_parameters(layer)
                forward_post_hook_handle = layer.register_forward_post_hook(
                    self._forward_post_hook)
                self._register_hook_handle_list.append(forward_post_hook_handle)
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    def save_quantized_model(self, layer, path, input_spec=None, **config):
        """
        Save the quantized model for the inference.

        Args:
            layer (Layer): The Layer to be saved.
            path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input of the saved model's forward 
                method, which can be described by InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of the saved model. Default None.
            **configs (dict, optional): Other save configuration options for compatibility. We do not 
                recommend using these configurations, they may be removed in the future. If not necessary, 
                DO NOT use them. Default None.
                The following options are currently supported:
                (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
                By default, all return variables of original Layer's forward method are kept as the 
                output of the saved model. If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given ``output_spec`` list. 

        Returns:
            None
        """

        assert isinstance(
            layer, dygraph.Layer), "model must be the instance of dygraph.Layer"
449
        self._layer = layer
450
        is_dynamic_mode = False
451
        with dygraph.guard():
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
            self._layer.eval()
            if self._register_hook_handle_list is not None:
                for handle in self._register_hook_handle_list:
                    handle.remove()
            if self._out_scale_dict:
                for key in self._out_scale_dict:
                    self._out_scale_dict[key] = float(self._out_scale_dict[key]
                                                      .numpy())
            else:
                for _, sub_layer in self._layer.named_sublayers():
                    if self._is_matched_layer(sub_layer):
                        layer_name = sub_layer.full_name()
                        if hasattr(sub_layer, "layer_name"):
                            layer_name = sub_layer.layer_name
                        if hasattr(sub_layer, "_quant_out_scale"):
                            self._out_scale_dict[layer_name] = float(
                                sub_layer._quant_out_scale)
469

470 471 472 473
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

G
guofei 已提交
474 475
        paddle.jit.save(layer=layer, path=path, input_spec=input_spec, **config)

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = Executor(place)

        file_prefix = os.path.basename(path)
        dirname = os.path.dirname(path)
        model_filename = file_prefix + INFER_MODEL_SUFFIX
        params_filename = file_prefix + INFER_PARAMS_SUFFIX

        [inference_program, feed_target_names, fetch_targets] = (
            load_inference_model(
                dirname=dirname,
                executor=exe,
                model_filename=model_filename,
                params_filename=params_filename))

494
        check_behind_op = False
G
guofei 已提交
495
        op_count = 0
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        ops_list = [key for key, _ in self._out_scale_dict.items()]
        if len(ops_list) == 0:
            warnings.warn(
                "Warning: No Layer of the model while to be saved contains the out_threshold attribute, "
                "so the generated inference model would not contain the out_threshold."
            )
        else:
            # Because the Layer in dygraph may correspond to multiple ops
            # in static program after being saved. To ensure correctness,
            # the outscale collected for output of dygraph Layer can only
            # be set to the last op in the corresponding ops in static program.
            #
            # We can judge the execution order of the ops which corresponding
            # to dygraph Layer by check_behind_op
            forward_op = None
            for block in inference_program.blocks:
                for op in block.ops:
                    if op.type in _op_real_in_out_name:
                        if op_count > len(ops_list):
                            warnings.warn(
                                "The number of Layer which has out_threshold attribute should be bigger than the op in inference model"
                            )
                            break
                        if check_behind_op:
                            check_behind_op = False
                            if op.type == "elementwise_add":
                                if self._is_op_matched(ops_list[op_count], op,
                                                       block):
                                    op._set_attr("out_threshold",
                                                 self._out_scale_dict[ops_list[
                                                     op_count]])
                                    op_count += 1
                                    forward_op = None
G
guofei 已提交
529 530
                                continue
                            else:
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
                                if forward_op is None:
                                    raise ValueError(
                                        "forward_op should not be None")
                                if self._is_op_matched(ops_list[op_count],
                                                       forward_op, block):
                                    forward_op._set_attr(
                                        "out_threshold", self._out_scale_dict[
                                            ops_list[op_count]])
                                    op_count += 1
                                    forward_op = None

                        if op.type in ["conv2d", "depthwise_conv2d", "matmul"]:
                            check_behind_op = True
                            forward_op = op
                            continue
                        if op_count >= len(ops_list):
                            warnings.warn(
                                "The number of Layer which has out_threshold attribute should be bigger than the op in inference model"
                            )
                            break
                        if self._is_op_matched(ops_list[op_count], op, block):
                            op._set_attr(
                                "out_threshold",
                                self._out_scale_dict[ops_list[op_count]])
                            op_count += 1
556 557 558 559 560 561 562 563 564 565 566

        # Save the processed program.
        save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
            main_program=inference_program.clone(),
            model_filename=model_filename,
            params_filename=params_filename)

567 568 569
        if is_dynamic_mode:
            paddle.disable_static()

570 571
    def _forward_post_hook(self, layer, input, output):
        assert isinstance(
572
            output, (core.VarBase, framework.Variable)
573 574 575 576 577 578
        ), "Multiple outputs are not currently supported in ImperativeOutScale."
        if output.dtype not in [
                core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP64
        ]:
            return
        if not hasattr(layer, "_out_scale"):
579 580 581
            self._out_scale = quant_nn.MovingAverageAbsMaxScale(
                layer, output.name, self._moving_rate, output.dtype)
        scale_out = self._out_scale(output)
G
guofei 已提交
582 583 584 585 586
        if hasattr(layer, 'layer_name'):
            layer_name = layer.layer_name
        else:
            layer_name = layer.full_name()
        self._out_scale_dict[layer_name] = scale_out