batch_norm_op.cc 21.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
16

Q
qingqing01 已提交
17
#include <memory>
S
Siddharth Goyal 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20

Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_layout.h"
22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
25

H
hong 已提交
26 27 28
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/multiary.h"

Q
Qiao Longfei 已提交
29 30 31
namespace paddle {
namespace operators {

Q
qingqing01 已提交
32
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
33 34 35 36 37 38 39
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BatchNorm");

Q
qingqing01 已提交
40
  bool is_test = ctx->Attrs().Get<bool>("is_test");
41 42 43
  bool trainable_stats = ctx->Attrs().Get<bool>("trainable_statistics");
  bool test_mode = is_test && (!trainable_stats);
  if (!test_mode) {
44
    OP_INOUT_CHECK(ctx->HasOutput("MeanOut"), "Output", "MeanOut", "BatchNorm");
45 46 47 48 49 50 51
    OP_INOUT_CHECK(
        ctx->HasOutput("VarianceOut"), "Output", "VarianceOut", "BatchNorm");
    OP_INOUT_CHECK(
        ctx->HasOutput("SavedMean"), "Output", "SavedMean", "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"),
                   "Output",
                   "SavedVariance",
52
                   "BatchNorm");
Q
Qiao Longfei 已提交
53
  }
K
Kexin Zhao 已提交
54

Q
qingqing01 已提交
55
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
56 57
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0],
                    ctx->Outputs("MeanOut")[0],
58 59 60
                    platform::errors::InvalidArgument(
                        "Mean and MeanOut should share the same memory"));
  PADDLE_ENFORCE_EQ(
61 62
      ctx->Inputs("Variance")[0],
      ctx->Outputs("VarianceOut")[0],
63 64
      platform::errors::InvalidArgument(
          "Variance and VarianceOut should share the same memory"));
Q
qingqing01 已提交
65 66

  const auto x_dims = ctx->GetInputDim("X");
67 68 69

  for (int i = 0; i < x_dims.size(); i++) {
    PADDLE_ENFORCE_EQ(
70 71
        (x_dims[i] == -1) || (x_dims[i] > 0),
        true,
72 73
        platform::errors::InvalidArgument(
            "Each dimension of input tensor is expected to be -1 or a "
74
            "positive number, but received %d. Input's shape is [%s].",
75 76
            x_dims[i],
            x_dims));
77 78
  }

79 80
  const DataLayout data_layout =
      phi::StringToDataLayout(ctx->Attrs().Get<std::string>("data_layout"));
Q
qingqing01 已提交
81

82 83
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
84 85
    PADDLE_ENFORCE_EQ(mom.size(),
                      1,
86
                      platform::errors::InvalidArgument(
C
ceci3 已提交
87 88 89
                          "The input tensor MomentumTensor's size must be 1"
                          "But received: MomentumTensor's size is [%d]",
                          mom.size()));
90 91
  }

92
  PADDLE_ENFORCE_GE(
93 94
      x_dims.size(),
      2,
K
Kaipeng Deng 已提交
95 96 97 98
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
99 100
          x_dims,
          x_dims.size()));
101
  PADDLE_ENFORCE_LE(
102 103
      x_dims.size(),
      5,
K
Kaipeng Deng 已提交
104 105 106 107
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
108 109
          x_dims,
          x_dims.size()));
110 111
  VLOG(4) << ctx->IsRunMKLDNNKernel();
  VLOG(4) << data_layout;
Q
qingqing01 已提交
112
  const int64_t C =
113
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
114 115
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
116

117 118
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
119

120
  PADDLE_ENFORCE_EQ(
121 122
      scale_dim.size(),
      1UL,
123 124 125 126
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
127 128 129 130
          scale_dim,
          scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(),
                    1UL,
131 132 133 134
                    platform::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
135 136
                        bias_dim,
                        bias_dim.size()));
C
ceci3 已提交
137

138
  bool check = true;
139
  if ((!ctx->IsRuntime()) &&
140
      (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
141 142 143 144
    check = false;
  }

  if (check) {
145 146
    PADDLE_ENFORCE_EQ(scale_dim[0],
                      C,
147 148 149
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
150 151 152 153
                          C,
                          scale_dim[0]));
    PADDLE_ENFORCE_EQ(bias_dim[0],
                      C,
154 155 156
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
157 158
                          C,
                          bias_dim[0]));
159
  }
Q
qingqing01 已提交
160
  ctx->SetOutputDim("Y", x_dims);
161
  VLOG(4) << x_dims;
Q
qingqing01 已提交
162 163 164 165 166 167 168 169 170
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
171
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
172 173 174 175 176 177 178
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
K
Kaipeng Deng 已提交
179
  PADDLE_ENFORCE_EQ(
180
      bn_param_type,
181 182
      framework::TransToProtoVarType(
          ctx.Input<phi::DenseTensor>("Scale")->dtype()),
K
Kaipeng Deng 已提交
183 184
      platform::errors::InvalidArgument("Scale input should be of float type"));
  PADDLE_ENFORCE_EQ(
185
      bn_param_type,
186 187
      framework::TransToProtoVarType(
          ctx.Input<phi::DenseTensor>("Bias")->dtype()),
K
Kaipeng Deng 已提交
188 189
      platform::errors::InvalidArgument("Bias input should be of float type"));
  PADDLE_ENFORCE_EQ(
190
      bn_param_type,
191 192
      framework::TransToProtoVarType(
          ctx.Input<phi::DenseTensor>("Mean")->dtype()),
K
Kaipeng Deng 已提交
193
      platform::errors::InvalidArgument("Mean input should be of float type"));
194 195 196 197 198
  PADDLE_ENFORCE_EQ(bn_param_type,
                    framework::TransToProtoVarType(
                        ctx.Input<phi::DenseTensor>("Variance")->dtype()),
                    platform::errors::InvalidArgument(
                        "Variance input should be of float type"));
Q
qingqing01 已提交
199

200
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
Q
qingqing01 已提交
201 202
}

203
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
204 205
    const std::string &var_name,
    const Tensor &tensor,
206 207 208 209 210
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
211 212
      (expected_kernel_type.data_layout_ == phi::DataLayout::kMKLDNN) &&
      (tensor.layout() != phi::DataLayout::kMKLDNN)) {
213 214 215
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
216
    auto dl = phi::StringToDataLayout(data_layout);
217 218
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
219
    if (dl != phi::DataLayout::kAnyLayout) {
220 221
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
222 223 224
    }
  }
#endif
225 226
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
227 228
}

Q
qingqing01 已提交
229 230 231 232 233 234 235 236 237
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
K
Kaipeng Deng 已提交
238
        PADDLE_ENFORCE_GE(
239 240
            epsilon,
            0.0f,
K
Kaipeng Deng 已提交
241 242
            platform::errors::InvalidArgument(
                "'epsilon' should be greater or equal than 0.0."));
243 244
        PADDLE_ENFORCE_LE(epsilon,
                          0.001f,
K
Kaipeng Deng 已提交
245 246
                          platform::errors::InvalidArgument(
                              "'epsilon' should be less or equal than 0.001."));
Q
qingqing01 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
262 263 264 265 266
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
282 283 284
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
C
ceci3 已提交
285 286
      .AsDispensable()
      .AsExtra();
Q
qingqing01 已提交
287 288 289 290 291 292 293 294
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
295 296 297 298 299
  AddAttr<bool>("trainable_statistics",
                "(bool, default false) Whether to calculate mean and variance "
                "in test mode. If setting true in test mode, mean and variace "
                "will be calculated by current batch statistics.")
      .SetDefault(false);
Q
qingqing01 已提交
300
  AddComment(R"DOC(
301
Batch Normalization.
Q
Qiao Longfei 已提交
302

303 304 305 306 307 308
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
309 310

)DOC");
Q
qingqing01 已提交
311
}
C
chengduo 已提交
312

Q
qingqing01 已提交
313 314
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
315
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNormGrad");
316 317 318
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                 "Input",
                 framework::GradVarName("Y"),
319
                 "BatchNormGrad");
320 321 322 323 324
  OP_INOUT_CHECK(
      ctx->HasInput("SavedMean"), "Input", "SavedMean", "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"),
                 "Input",
                 "SavedVariance",
325
                 "BatchNormGrad");
Q
qingqing01 已提交
326 327

  // check output
328 329
  const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
  const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));
330
  const bool has_x_grad = ctx->HasOutput(framework::GradVarName("X"));
331

332 333
  PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad),
                    true,
334
                    platform::errors::NotFound(
335 336 337
                        "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
                        "or not be null at same time. But now, "
                        "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
338 339
                        has_scale_grad,
                        has_bias_grad));
340

Q
qingqing01 已提交
341 342
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
K
Kaipeng Deng 已提交
343
    PADDLE_ENFORCE_EQ(
344 345
        !ctx->Attrs().Get<bool>("use_mkldnn"),
        true,
K
Kaipeng Deng 已提交
346 347 348
        platform::errors::InvalidArgument(
            "Using global stats during training is not supported "
            "in gradient op kernel of batch_norm_mkldnn_op now."));
Q
qingqing01 已提交
349
  }
Q
Qiao Longfei 已提交
350

351 352
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormGrad");
  const auto x_dims = ctx->GetInputDim("X");
353 354
  const DataLayout data_layout =
      phi::StringToDataLayout(ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
355

356
  const int C =
357
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
358 359 360 361 362 363 364
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

  // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
  if (has_scale_grad) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
365
  }
366 367 368
  if (has_x_grad) {
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }
Q
qingqing01 已提交
369
}
Q
Qiao Longfei 已提交
370

Q
qingqing01 已提交
371 372 373 374
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
K
Kaipeng Deng 已提交
375 376
    PADDLE_THROW(
        platform::errors::InvalidArgument("can't find gradient variable of Y"));
Q
qingqing01 已提交
377 378 379 380 381 382 383 384
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
K
Kaipeng Deng 已提交
385 386
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
Q
qingqing01 已提交
387
  }
388

389
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
390
  return framework::OpKernelType(data_type, ctx.GetPlace());
Q
qingqing01 已提交
391
}
Q
Qiao Longfei 已提交
392

393
framework::OpKernelType BatchNormGradOp::GetKernelTypeForVar(
394 395
    const std::string &var_name,
    const Tensor &tensor,
396 397 398 399 400
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "X") || (var_name == framework::GradVarName("Y"))) &&
401 402
      (expected_kernel_type.data_layout_ == phi::DataLayout::kMKLDNN) &&
      (tensor.layout() != phi::DataLayout::kMKLDNN)) {
403 404 405
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
406
    auto dl = phi::StringToDataLayout(data_layout);
407 408
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
409
    if (dl != phi::DataLayout::kAnyLayout) {
410 411
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
412 413 414
    }
  }
#endif
415 416
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
417 418
}

H
hong 已提交
419
template <typename T>
420
void BatchNormGradMaker<T>::Apply(GradOpPtr<T> op) const {
421 422 423 424 425 426 427 428
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
429 430 431
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
432 433

  // used when setting use_global_stats True during training
R
Ruibiao Chen 已提交
434 435
  if (PADDLE_GET_CONST(bool, this->GetAttr("use_global_stats")) ||
      PADDLE_GET_CONST(bool, this->GetAttr("is_test"))) {
436 437 438
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
439

440
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
441

442 443 444 445
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
}
Y
Yu Yang 已提交
446

447 448 449 450 451 452 453
template <typename T>
void BatchNormDoubleGradMaker<T>::Apply(GradOpPtr<T> op) const {
  op->SetType("batch_norm_grad_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("SavedMean", this->Input("SavedMean"));
  op->SetInput("SavedVariance", this->Input("SavedVariance"));
R
Ruibiao Chen 已提交
454
  if (PADDLE_GET_CONST(bool, this->GetAttr("use_global_stats"))) {
455
    op->SetInput("Mean", this->Input("Mean"));
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    op->SetInput("Variance", this->Input("Variance"));
  }
  op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
  op->SetInput("DDScale", this->OutputGrad(framework::GradVarName("Scale")));
  op->SetInput("DDBias", this->OutputGrad(framework::GradVarName("Bias")));
  op->SetInput("DY", this->Input(framework::GradVarName("Y")));

  op->SetAttrMap(this->Attrs());
  op->SetOutput("DX", this->InputGrad("X"));
  op->SetOutput("DScale", this->InputGrad("Scale"));
  op->SetOutput("DDY", this->InputGrad(framework::GradVarName("Y")));
}

void BatchNormDoubleGradOp::InferShape(
    framework::InferShapeContext *ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormDoubleGrad");
472 473 474 475 476 477 478
  OP_INOUT_CHECK(
      ctx->HasInput("Scale"), "Input", "Scale", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(
      ctx->HasInput("SavedMean"), "Input", "SavedMean", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"),
                 "Input",
                 "SavedVariance",
479 480 481 482
                 "BatchNormDoubleGrad");

  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
483 484 485
    OP_INOUT_CHECK(ctx->HasInput("Variance"),
                   "Input",
                   "VarianceOut",
486 487 488 489 490 491 492 493 494
                   "BatchNormDoubleGrad");
  }

  OP_INOUT_CHECK(ctx->HasInput("DY"), "Input", "DY", "BatchNormDoubleGrad");

  // check output
  OP_INOUT_CHECK(ctx->HasOutput("DX"), "Output", "DX", "BatchNormDoubleGrad");

  const auto x_dims = ctx->GetInputDim("X");
495 496
  const DataLayout data_layout =
      phi::StringToDataLayout(ctx->Attrs().Get<std::string>("data_layout"));
497
  const int C =
498
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
499 500 501
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
  if (ctx->HasOutput("DX")) {
    ctx->SetOutputDim("DX", x_dims);
  }
  if (ctx->HasOutput("DScale")) {
    ctx->SetOutputDim("DScale", {C});
  }
  if (ctx->HasOutput("DDY")) {
    ctx->ShareDim("X", "DDY");
  }
}

framework::OpKernelType BatchNormDoubleGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar("DY");
  if (var == nullptr) {
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
  }
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}

DECLARE_INPLACE_OP_INFERER(BatchNormDoubleGradOpInplaceInferer, {"DY", "DDY"});

Q
Qiao Longfei 已提交
536 537 538 539
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
540

541 542
DECLARE_INFER_SHAPE_FUNCTOR(batch_norm,
                            BatchNormInferShapeFunctor,
H
hong 已提交
543 544
                            PD_INFER_META(phi::BatchNormInferMeta));

545 546 547
REGISTER_OPERATOR(batch_norm,
                  ops::BatchNormOp,
                  ops::BatchNormOpMaker,
H
hong 已提交
548 549 550
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
551 552
REGISTER_OPERATOR(batch_norm_grad,
                  ops::BatchNormGradOp,
553 554
                  ops::BatchNormDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormDoubleGradMaker<paddle::imperative::OpBase>);
555 556
REGISTER_OPERATOR(batch_norm_grad_grad,
                  ops::BatchNormDoubleGradOp,
557
                  ops::BatchNormDoubleGradOpInplaceInferer);