batch_norm_op.cc 22.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
16

Q
qingqing01 已提交
17
#include <memory>
S
Siddharth Goyal 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20

Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_layout.h"
22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
25

H
hong 已提交
26 27 28
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/multiary.h"

Q
Qiao Longfei 已提交
29 30 31
namespace paddle {
namespace operators {

Q
qingqing01 已提交
32
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
33 34 35 36 37 38 39
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BatchNorm");

Q
qingqing01 已提交
40
  bool is_test = ctx->Attrs().Get<bool>("is_test");
41 42 43
  bool trainable_stats = ctx->Attrs().Get<bool>("trainable_statistics");
  bool test_mode = is_test && (!trainable_stats);
  if (!test_mode) {
44
    OP_INOUT_CHECK(ctx->HasOutput("MeanOut"), "Output", "MeanOut", "BatchNorm");
45 46 47 48 49 50 51
    OP_INOUT_CHECK(
        ctx->HasOutput("VarianceOut"), "Output", "VarianceOut", "BatchNorm");
    OP_INOUT_CHECK(
        ctx->HasOutput("SavedMean"), "Output", "SavedMean", "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"),
                   "Output",
                   "SavedVariance",
52
                   "BatchNorm");
Q
Qiao Longfei 已提交
53
  }
K
Kexin Zhao 已提交
54

Q
qingqing01 已提交
55
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
56 57
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0],
                    ctx->Outputs("MeanOut")[0],
58 59 60
                    platform::errors::InvalidArgument(
                        "Mean and MeanOut should share the same memory"));
  PADDLE_ENFORCE_EQ(
61 62
      ctx->Inputs("Variance")[0],
      ctx->Outputs("VarianceOut")[0],
63 64
      platform::errors::InvalidArgument(
          "Variance and VarianceOut should share the same memory"));
Q
qingqing01 已提交
65 66

  const auto x_dims = ctx->GetInputDim("X");
67 68 69

  for (int i = 0; i < x_dims.size(); i++) {
    PADDLE_ENFORCE_EQ(
70 71
        (x_dims[i] == -1) || (x_dims[i] > 0),
        true,
72 73
        platform::errors::InvalidArgument(
            "Each dimension of input tensor is expected to be -1 or a "
74
            "positive number, but received %d. Input's shape is [%s].",
75 76
            x_dims[i],
            x_dims));
77 78
  }

Q
qingqing01 已提交
79 80 81
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

82 83
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
84 85
    PADDLE_ENFORCE_EQ(mom.size(),
                      1,
86
                      platform::errors::InvalidArgument(
C
ceci3 已提交
87 88 89
                          "The input tensor MomentumTensor's size must be 1"
                          "But received: MomentumTensor's size is [%d]",
                          mom.size()));
90 91
  }

92
  PADDLE_ENFORCE_GE(
93 94
      x_dims.size(),
      2,
K
Kaipeng Deng 已提交
95 96 97 98
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
99 100
          x_dims,
          x_dims.size()));
101
  PADDLE_ENFORCE_LE(
102 103
      x_dims.size(),
      5,
K
Kaipeng Deng 已提交
104 105 106 107
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
108 109
          x_dims,
          x_dims.size()));
110 111
  VLOG(4) << ctx->IsRunMKLDNNKernel();
  VLOG(4) << data_layout;
Q
qingqing01 已提交
112
  const int64_t C =
113
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
114 115
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
116

117 118
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
119

120
  PADDLE_ENFORCE_EQ(
121 122
      scale_dim.size(),
      1UL,
123 124 125 126
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
127 128 129 130
          scale_dim,
          scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(),
                    1UL,
131 132 133 134
                    platform::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
135 136
                        bias_dim,
                        bias_dim.size()));
C
ceci3 已提交
137

138
  bool check = true;
139
  if ((!ctx->IsRuntime()) &&
140
      (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
141 142 143 144
    check = false;
  }

  if (check) {
145 146
    PADDLE_ENFORCE_EQ(scale_dim[0],
                      C,
147 148 149
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
150 151 152 153
                          C,
                          scale_dim[0]));
    PADDLE_ENFORCE_EQ(bias_dim[0],
                      C,
154 155 156
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
157 158
                          C,
                          bias_dim[0]));
159
  }
Q
qingqing01 已提交
160
  ctx->SetOutputDim("Y", x_dims);
161
  VLOG(4) << x_dims;
Q
qingqing01 已提交
162 163 164 165 166 167 168 169 170
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
171
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
172 173 174 175 176 177 178
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
K
Kaipeng Deng 已提交
179
  PADDLE_ENFORCE_EQ(
180 181
      bn_param_type,
      framework::TransToProtoVarType(ctx.Input<Tensor>("Scale")->dtype()),
K
Kaipeng Deng 已提交
182 183
      platform::errors::InvalidArgument("Scale input should be of float type"));
  PADDLE_ENFORCE_EQ(
184 185
      bn_param_type,
      framework::TransToProtoVarType(ctx.Input<Tensor>("Bias")->dtype()),
K
Kaipeng Deng 已提交
186 187
      platform::errors::InvalidArgument("Bias input should be of float type"));
  PADDLE_ENFORCE_EQ(
188 189
      bn_param_type,
      framework::TransToProtoVarType(ctx.Input<Tensor>("Mean")->dtype()),
K
Kaipeng Deng 已提交
190
      platform::errors::InvalidArgument("Mean input should be of float type"));
191 192 193 194 195
  PADDLE_ENFORCE_EQ(
      bn_param_type,
      framework::TransToProtoVarType(ctx.Input<Tensor>("Variance")->dtype()),
      platform::errors::InvalidArgument(
          "Variance input should be of float type"));
Q
qingqing01 已提交
196 197

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
198
#ifdef PADDLE_WITH_MKLDNN
199 200 201 202 203
  if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    return framework::OpKernelType(input_data_type,
                                   ctx.GetPlace(),
                                   framework::DataLayout::kMKLDNN,
                                   framework::LibraryType::kMKLDNN);
K
Kexin Zhao 已提交
204
  }
Q
qingqing01 已提交
205
#endif
Q
Qiao Longfei 已提交
206

207
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
Q
qingqing01 已提交
208 209
}

210
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
211 212
    const std::string &var_name,
    const Tensor &tensor,
213 214 215 216 217 218 219 220 221 222 223 224 225 226
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
227 228
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
229 230 231
    }
  }
#endif
232 233
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
234 235
}

Q
qingqing01 已提交
236 237 238 239 240 241 242 243 244
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
K
Kaipeng Deng 已提交
245
        PADDLE_ENFORCE_GE(
246 247
            epsilon,
            0.0f,
K
Kaipeng Deng 已提交
248 249
            platform::errors::InvalidArgument(
                "'epsilon' should be greater or equal than 0.0."));
250 251
        PADDLE_ENFORCE_LE(epsilon,
                          0.001f,
K
Kaipeng Deng 已提交
252 253
                          platform::errors::InvalidArgument(
                              "'epsilon' should be less or equal than 0.001."));
Q
qingqing01 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
269 270 271 272 273
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
289 290 291
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
C
ceci3 已提交
292 293
      .AsDispensable()
      .AsExtra();
Q
qingqing01 已提交
294 295 296 297 298 299 300 301
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
302 303 304 305 306
  AddAttr<bool>("trainable_statistics",
                "(bool, default false) Whether to calculate mean and variance "
                "in test mode. If setting true in test mode, mean and variace "
                "will be calculated by current batch statistics.")
      .SetDefault(false);
Q
qingqing01 已提交
307
  AddComment(R"DOC(
308
Batch Normalization.
Q
Qiao Longfei 已提交
309

310 311 312 313 314 315
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
316 317

)DOC");
Q
qingqing01 已提交
318
}
C
chengduo 已提交
319

Q
qingqing01 已提交
320 321
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
322
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNormGrad");
323 324 325
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                 "Input",
                 framework::GradVarName("Y"),
326
                 "BatchNormGrad");
327 328 329 330 331
  OP_INOUT_CHECK(
      ctx->HasInput("SavedMean"), "Input", "SavedMean", "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"),
                 "Input",
                 "SavedVariance",
332
                 "BatchNormGrad");
Q
qingqing01 已提交
333 334

  // check output
335 336
  const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
  const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));
337
  const bool has_x_grad = ctx->HasOutput(framework::GradVarName("X"));
338

339 340
  PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad),
                    true,
341
                    platform::errors::NotFound(
342 343 344
                        "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
                        "or not be null at same time. But now, "
                        "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
345 346
                        has_scale_grad,
                        has_bias_grad));
347

Q
qingqing01 已提交
348 349
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
K
Kaipeng Deng 已提交
350
    PADDLE_ENFORCE_EQ(
351 352
        !ctx->Attrs().Get<bool>("use_mkldnn"),
        true,
K
Kaipeng Deng 已提交
353 354 355
        platform::errors::InvalidArgument(
            "Using global stats during training is not supported "
            "in gradient op kernel of batch_norm_mkldnn_op now."));
Q
qingqing01 已提交
356
  }
Q
Qiao Longfei 已提交
357

358 359 360 361
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormGrad");
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
362

363
  const int C =
364
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
365 366 367 368 369 370 371
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

  // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
  if (has_scale_grad) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
372
  }
373 374 375
  if (has_x_grad) {
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }
Q
qingqing01 已提交
376
}
Q
Qiao Longfei 已提交
377

Q
qingqing01 已提交
378 379 380 381
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
K
Kaipeng Deng 已提交
382 383
    PADDLE_THROW(
        platform::errors::InvalidArgument("can't find gradient variable of Y"));
Q
qingqing01 已提交
384 385 386 387 388 389 390 391
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
K
Kaipeng Deng 已提交
392 393
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
Q
qingqing01 已提交
394
  }
395

Q
qingqing01 已提交
396
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
397
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
398

399
#ifdef PADDLE_WITH_MKLDNN
400 401 402 403 404
  if (this->CanMKLDNNBeUsed(ctx, data_type)) {
    return framework::OpKernelType(data_type,
                                   ctx.GetPlace(),
                                   framework::DataLayout::kMKLDNN,
                                   framework::LibraryType::kMKLDNN);
Q
qingqing01 已提交
405
  }
406
#endif
407

408
  return framework::OpKernelType(data_type, ctx.GetPlace());
Q
qingqing01 已提交
409
}
Q
Qiao Longfei 已提交
410

411
framework::OpKernelType BatchNormGradOp::GetKernelTypeForVar(
412 413
    const std::string &var_name,
    const Tensor &tensor,
414 415 416 417 418 419 420 421 422 423 424 425 426 427
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "X") || (var_name == framework::GradVarName("Y"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
428 429
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
430 431 432
    }
  }
#endif
433 434
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
435 436
}

H
hong 已提交
437
template <typename T>
438
void BatchNormGradMaker<T>::Apply(GradOpPtr<T> op) const {
439 440 441 442 443 444 445 446
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
447 448 449
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
450 451

  // used when setting use_global_stats True during training
R
Ruibiao Chen 已提交
452 453
  if (PADDLE_GET_CONST(bool, this->GetAttr("use_global_stats")) ||
      PADDLE_GET_CONST(bool, this->GetAttr("is_test"))) {
454 455 456
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
457

458
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
459

460 461 462 463
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
}
Y
Yu Yang 已提交
464

465 466 467 468 469 470 471
template <typename T>
void BatchNormDoubleGradMaker<T>::Apply(GradOpPtr<T> op) const {
  op->SetType("batch_norm_grad_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("SavedMean", this->Input("SavedMean"));
  op->SetInput("SavedVariance", this->Input("SavedVariance"));
R
Ruibiao Chen 已提交
472
  if (PADDLE_GET_CONST(bool, this->GetAttr("use_global_stats"))) {
473
    op->SetInput("Mean", this->Input("Mean"));
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    op->SetInput("Variance", this->Input("Variance"));
  }
  op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
  op->SetInput("DDScale", this->OutputGrad(framework::GradVarName("Scale")));
  op->SetInput("DDBias", this->OutputGrad(framework::GradVarName("Bias")));
  op->SetInput("DY", this->Input(framework::GradVarName("Y")));

  op->SetAttrMap(this->Attrs());
  op->SetOutput("DX", this->InputGrad("X"));
  op->SetOutput("DScale", this->InputGrad("Scale"));
  op->SetOutput("DDY", this->InputGrad(framework::GradVarName("Y")));
}

void BatchNormDoubleGradOp::InferShape(
    framework::InferShapeContext *ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormDoubleGrad");
490 491 492 493 494 495 496
  OP_INOUT_CHECK(
      ctx->HasInput("Scale"), "Input", "Scale", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(
      ctx->HasInput("SavedMean"), "Input", "SavedMean", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"),
                 "Input",
                 "SavedVariance",
497 498 499 500
                 "BatchNormDoubleGrad");

  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
501 502 503
    OP_INOUT_CHECK(ctx->HasInput("Variance"),
                   "Input",
                   "VarianceOut",
504 505 506 507 508 509 510 511 512
                   "BatchNormDoubleGrad");
  }

  OP_INOUT_CHECK(ctx->HasInput("DY"), "Input", "DY", "BatchNormDoubleGrad");

  // check output
  OP_INOUT_CHECK(ctx->HasOutput("DX"), "Output", "DX", "BatchNormDoubleGrad");

  const auto x_dims = ctx->GetInputDim("X");
513 514 515
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
  const int C =
516
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
517 518 519
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
  if (ctx->HasOutput("DX")) {
    ctx->SetOutputDim("DX", x_dims);
  }
  if (ctx->HasOutput("DScale")) {
    ctx->SetOutputDim("DScale", {C});
  }
  if (ctx->HasOutput("DDY")) {
    ctx->ShareDim("X", "DDY");
  }
}

framework::OpKernelType BatchNormDoubleGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar("DY");
  if (var == nullptr) {
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
  }
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}

DECLARE_INPLACE_OP_INFERER(BatchNormDoubleGradOpInplaceInferer, {"DY", "DDY"});

Q
Qiao Longfei 已提交
554 555 556 557
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
558

559 560
DECLARE_INFER_SHAPE_FUNCTOR(batch_norm,
                            BatchNormInferShapeFunctor,
H
hong 已提交
561 562
                            PD_INFER_META(phi::BatchNormInferMeta));

563 564 565
REGISTER_OPERATOR(batch_norm,
                  ops::BatchNormOp,
                  ops::BatchNormOpMaker,
H
hong 已提交
566 567 568
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
569 570
REGISTER_OPERATOR(batch_norm_grad,
                  ops::BatchNormGradOp,
571 572
                  ops::BatchNormDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormDoubleGradMaker<paddle::imperative::OpBase>);
573 574
REGISTER_OPERATOR(batch_norm_grad_grad,
                  ops::BatchNormDoubleGradOp,
575
                  ops::BatchNormDoubleGradOpInplaceInferer);