Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8daccc9e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8daccc9e
编写于
9月 25, 2020
作者:
C
ceci3
提交者:
GitHub
9月 25, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix batch norm double grad compute (#27549)
* fix bn double grad, test=develop * update, test=develop
上级
c143326d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
131 addition
and
41 deletion
+131
-41
paddle/fluid/operators/batch_norm_op.cc
paddle/fluid/operators/batch_norm_op.cc
+34
-21
paddle/fluid/operators/instance_norm_op.cc
paddle/fluid/operators/instance_norm_op.cc
+3
-3
paddle/fluid/operators/norm_utils.cu.h
paddle/fluid/operators/norm_utils.cu.h
+58
-17
python/paddle/fluid/tests/unittests/test_norm_nn_grad.py
python/paddle/fluid/tests/unittests/test_norm_nn_grad.py
+36
-0
未找到文件。
paddle/fluid/operators/batch_norm_op.cc
浏览文件 @
8daccc9e
...
...
@@ -839,6 +839,7 @@ void BatchNormDoubleGradMaker<T>::Apply(GradOpPtr<T> op) const {
op
->
SetInput
(
"SavedMean"
,
this
->
Input
(
"SavedMean"
));
op
->
SetInput
(
"SavedVariance"
,
this
->
Input
(
"SavedVariance"
));
if
(
BOOST_GET_CONST
(
bool
,
this
->
GetAttr
(
"use_global_stats"
)))
{
op
->
SetInput
(
"Mean"
,
this
->
Input
(
"Mean"
));
op
->
SetInput
(
"Variance"
,
this
->
Input
(
"Variance"
));
}
op
->
SetInput
(
"DDX"
,
this
->
OutputGrad
(
framework
::
GradVarName
(
"X"
)));
...
...
@@ -868,14 +869,19 @@ void BatchNormDoubleGradOp::InferShape(
"BatchNormDoubleGrad"
);
}
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"DDX"
),
"Input"
,
"DDX"
,
"BatchNormDoubleGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"DY"
),
"Input"
,
"DY"
,
"BatchNormDoubleGrad"
);
// check output
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"DX"
),
"Output"
,
"DX"
,
"BatchNormDoubleGrad"
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
C
=
x_dims
[
1
];
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"data_layout"
));
const
int
C
=
((
this
->
IsMKLDNNType
()
==
true
)
||
(
data_layout
==
DataLayout
::
kNCHW
)
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
if
(
ctx
->
HasOutput
(
"DX"
))
{
ctx
->
SetOutputDim
(
"DX"
,
x_dims
);
}
...
...
@@ -957,7 +963,9 @@ class BatchNormDoubleGradKernel<platform::CPUDeviceContext, T>
Tensor
inv_var_tensor
;
if
(
use_global_stats
)
{
const
auto
*
running_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
running_variance
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
mean_data
=
running_mean
->
data
<
T
>
();
inv_var_tensor
.
Resize
({
C
});
T
*
running_inv_var_data
=
inv_var_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -1077,12 +1085,12 @@ class BatchNormDoubleGradKernel<platform::CPUDeviceContext, T>
// (np.mean(dy, axis=(n,h,w)) - dy) + inv_var.pow(3) / NxHxW *
// np.sum(dy,
// axis=(n,h,w)) * (x - mean) *
// (np.mean(ddx, axis=(n,h,w)) - ddx) + ddr * (dy * inv_var -
// (np.mean(ddx, axis=(n,h,w)) - ddx)
)
+ ddr * (dy * inv_var -
// inv_var
// *
// np.mean(dy, axis=(n,h,w)) -
// inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean),
// axis=(n,h,w)))
)
// axis=(n,h,w)))
if
(
ddX
)
{
dx_arr
+=
...
...
@@ -1176,7 +1184,8 @@ class BatchNormDoubleGradKernel<platform::CPUDeviceContext, T>
C
,
sample_size
);
ddy_arr
.
setZero
();
if
(
use_global_stats
)
{
// math: ddy = r * ddx * inv_var
// math: ddy = r * ddx * inv_var + ddbias +
// ddscale * (x - mean) * inv_var
if
(
ddX
)
{
ddy_arr
=
scale_tile_data
*
ddx_arr
*
inv_var_tile_data
;
}
...
...
@@ -1196,25 +1205,29 @@ class BatchNormDoubleGradKernel<platform::CPUDeviceContext, T>
.
replicate
(
1
,
sample_size
)
/
sample_size
);
}
if
(
ddScale
&&
ddBias
)
{
ConstEigenVectorArrayMap
<
T
>
ddscale_arr
(
ddScale
->
data
<
T
>
(),
C
);
Tensor
ddscale_tile
;
ddscale_tile
.
Resize
({
C
,
sample_size
});
EigenArrayMap
<
T
>
ddscale_tile_data
(
ddscale_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
,
sample_size
);
ddscale_tile_data
=
ddscale_arr
.
replicate
(
1
,
sample_size
);
}
if
(
ddScale
)
{
ConstEigenVectorArrayMap
<
T
>
ddscale_arr
(
ddScale
->
data
<
T
>
(),
C
);
Tensor
ddscale_tile
;
ddscale_tile
.
Resize
({
C
,
sample_size
});
EigenArrayMap
<
T
>
ddscale_tile_data
(
ddscale_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
,
sample_size
);
ddscale_tile_data
=
ddscale_arr
.
replicate
(
1
,
sample_size
);
ddy_arr
+=
x_sub_mean_mul_invstd_arr
*
ddscale_tile_data
;
}
ConstEigenVectorArrayMap
<
T
>
ddbias_arr
(
ddBias
->
data
<
T
>
(),
C
);
Tensor
ddbias_tile
;
ddbias_tile
.
Resize
({
C
,
sample_size
});
EigenArrayMap
<
T
>
ddbias_tile_data
(
ddbias_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
,
sample_size
);
ddbias_tile_data
=
ddbias_arr
.
replicate
(
1
,
sample_size
);
if
(
ddBias
)
{
ConstEigenVectorArrayMap
<
T
>
ddbias_arr
(
ddBias
->
data
<
T
>
(),
C
);
Tensor
ddbias_tile
;
ddbias_tile
.
Resize
({
C
,
sample_size
});
EigenArrayMap
<
T
>
ddbias_tile_data
(
ddbias_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
,
sample_size
);
ddbias_tile_data
=
ddbias_arr
.
replicate
(
1
,
sample_size
);
ddy_arr
+=
x_sub_mean_mul_invstd_arr
*
ddscale_tile_data
;
ddy_arr
+=
ddbias_tile_data
;
}
ddy_arr
+=
ddbias_tile_data
;
}
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
VLOG
(
3
)
<<
"Transform batchnorm output from NHWC to NCHW"
;
TransToChannelFirst
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
(
...
...
paddle/fluid/operators/instance_norm_op.cc
浏览文件 @
8daccc9e
...
...
@@ -520,11 +520,11 @@ class InstanceNormDoubleGradKernel<platform::CPUDeviceContext, T>
// (np.mean(dy, axis=(h,w)) - dy) + inv_var.pow(3) / HxW *
// np.sum(dy,
// axis=(h,w)) * (x - mean) *
// (np.mean(ddx, axis=(h,w)) - ddx)
+ ddr * (dy * inv_var - inv_var
// *
// (np.mean(ddx, axis=(h,w)) - ddx)
) + ddr * (dy * inv_var -
//
inv_var
*
// np.mean(dy, axis=(h,w)) -
// inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean),
// axis=(h,w)))
)
// axis=(h,w)))
Tensor
x_sub_mean_mul_invstd
;
x_sub_mean_mul_invstd
.
Resize
({
sample_size
,
NxC
});
...
...
paddle/fluid/operators/norm_utils.cu.h
浏览文件 @
8daccc9e
...
...
@@ -40,12 +40,12 @@ using DataLayout = framework::DataLayout;
// (np.mean(dy, axis=(n,h,w)) - dy) + inv_var.pow(3) / NxHxW *
// np.sum(dy,
// axis=(n,h,w)) * (x - mean) *
// (np.mean(ddx, axis=(n,h,w)) - ddx) + ddr * (dy * inv_var -
// (np.mean(ddx, axis=(n,h,w)) - ddx)
)
+ ddr * (dy * inv_var -
// inv_var
// *
// np.mean(dy, axis=(n,h,w)) -
// inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean),
// axis=(n,h,w)))
)
// axis=(n,h,w)))
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
__global__
void
DoubleGradComputeDX
(
const
T
*
x
,
const
T
*
mean
,
...
...
@@ -138,7 +138,7 @@ __global__ void DoubleGradComputeDX(const T *x, const T *mean,
?
(
j
/
sample_size
*
C
+
i
)
*
sample_size
+
j
%
sample_size
:
j
*
outer_size
+
i
;
dx
[
index
]
+=
(
dy
[
index
]
*
var_val
-
dy_sum_val
/
inner_size
*
var_val
-
(
x
[
index
]
-
mean_val
)
*
var_val
*
(
x
[
index
]
-
mean_val
)
*
var_val
*
var_val
*
dy_mul_x_sub_mean_sum_val
*
var_val
/
inner_size
)
*
ddscale
[
i
];
}
...
...
@@ -326,19 +326,57 @@ __global__ void DoubleGradComputeDScaleWithGlobal(
}
// math: dx = ddscale * dy * inv_var
// math: ddy = scale * ddx * inv_var
template
<
typename
T
,
framework
::
DataLayout
layout
>
__global__
void
DoubleGradComputeDataWithGlobal
(
const
T
*
dy
,
const
T
*
scale
,
const
T
*
variance
,
const
double
epsilon
,
const
int
C
,
const
int
sample_size
,
const
int
num
,
T
*
dx
)
{
__global__
void
DoubleGradComputeDXWithGlobal
(
const
T
*
dy
,
const
T
*
ddscale
,
const
T
*
variance
,
const
double
epsilon
,
const
int
C
,
const
int
sample_size
,
const
int
num
,
T
*
dx
)
{
int
gid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
if
(
scale
!=
nullptr
)
{
if
(
dd
scale
!=
nullptr
)
{
for
(
int
i
=
gid
;
i
<
num
;
i
+=
stride
)
{
const
int
c
=
layout
==
framework
::
DataLayout
::
kNCHW
?
i
/
sample_size
%
C
:
i
%
C
;
T
inv_var
=
1.0
/
sqrt
(
variance
[
c
]
+
epsilon
);
dx
[
i
]
=
dy
[
i
]
*
scale
[
c
]
*
inv_var
;
dx
[
i
]
=
dy
[
i
]
*
ddscale
[
c
]
*
inv_var
;
}
}
}
// math: ddy = scale * ddx * inv_var + ddbias +
// ddscale * (x - mean) * inv_var
template
<
typename
T
,
framework
::
DataLayout
layout
>
__global__
void
DoubleGradComputeDDYWithGlobal
(
const
T
*
ddx
,
const
T
*
scale
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
x
,
const
T
*
ddbias
,
const
T
*
ddscale
,
const
double
epsilon
,
const
int
C
,
const
int
sample_size
,
const
int
num
,
T
*
ddy
)
{
int
gid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
if
(
ddx
!=
nullptr
)
{
for
(
int
i
=
gid
;
i
<
num
;
i
+=
stride
)
{
const
int
c
=
layout
==
framework
::
DataLayout
::
kNCHW
?
i
/
sample_size
%
C
:
i
%
C
;
T
inv_var
=
1.0
/
sqrt
(
variance
[
c
]
+
epsilon
);
ddy
[
i
]
+=
ddx
[
i
]
*
scale
[
c
]
*
inv_var
;
}
}
__syncthreads
();
if
(
ddscale
!=
nullptr
)
{
for
(
int
i
=
gid
;
i
<
num
;
i
+=
stride
)
{
const
int
c
=
layout
==
framework
::
DataLayout
::
kNCHW
?
i
/
sample_size
%
C
:
i
%
C
;
T
inv_var
=
1.0
/
sqrt
(
variance
[
c
]
+
epsilon
);
ddy
[
i
]
+=
(
x
[
i
]
-
mean
[
c
])
*
inv_var
*
ddscale
[
c
];
}
}
__syncthreads
();
if
(
ddbias
!=
nullptr
)
{
for
(
int
i
=
gid
;
i
<
num
;
i
+=
stride
)
{
const
int
c
=
layout
==
framework
::
DataLayout
::
kNCHW
?
i
/
sample_size
%
C
:
i
%
C
;
ddy
[
i
]
+=
ddbias
[
c
];
}
}
}
...
...
@@ -383,8 +421,11 @@ void NormDoubleGradFunctor(const framework::ExecutionContext &ctx,
const
T
*
mean_data
,
*
variance_data
;
if
(
use_global_stats
)
{
const
auto
*
running_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
running_var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
running_mean_data
=
running_mean
->
template
data
<
T
>();
const
auto
*
running_var_data
=
running_var
->
template
data
<
T
>();
mean_data
=
running_mean_data
;
variance_data
=
running_var_data
;
}
else
{
const
T
*
smean_data
=
Saved_mean
->
data
<
T
>
();
...
...
@@ -398,12 +439,12 @@ void NormDoubleGradFunctor(const framework::ExecutionContext &ctx,
set_constant
(
dev_ctx
,
dX
,
static_cast
<
T
>
(
0
));
if
(
use_global_stats
)
{
if
(
data_layout
==
DataLayout
::
kNHWC
)
{
DoubleGradComputeD
ata
WithGlobal
<
DoubleGradComputeD
X
WithGlobal
<
T
,
DataLayout
::
kNHWC
><<<
grid1
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
dy_data
,
ddscale_data
,
variance_data
,
epsilon
,
C
,
sample_size
,
num
,
dx_data
);
}
else
{
DoubleGradComputeD
ata
WithGlobal
<
DoubleGradComputeD
X
WithGlobal
<
T
,
DataLayout
::
kNCHW
><<<
grid1
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
dy_data
,
ddscale_data
,
variance_data
,
epsilon
,
C
,
sample_size
,
num
,
dx_data
);
...
...
@@ -456,15 +497,15 @@ void NormDoubleGradFunctor(const framework::ExecutionContext &ctx,
set_constant
(
dev_ctx
,
ddY
,
static_cast
<
T
>
(
0
));
if
(
use_global_stats
)
{
if
(
data_layout
==
DataLayout
::
kNHWC
)
{
DoubleGradComputeD
ata
WithGlobal
<
DoubleGradComputeD
DY
WithGlobal
<
T
,
DataLayout
::
kNHWC
><<<
grid1
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
ddx_data
,
scale_data
,
variance_data
,
epsilon
,
C
,
sample_size
,
num
,
ddy_data
);
ddx_data
,
scale_data
,
mean_data
,
variance_data
,
x_data
,
ddbias_data
,
dd
scale_data
,
epsilon
,
C
,
sample_size
,
num
,
dd
y_data
);
}
else
{
DoubleGradComputeD
ata
WithGlobal
<
DoubleGradComputeD
DY
WithGlobal
<
T
,
DataLayout
::
kNCHW
><<<
grid1
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
ddx_data
,
scale_data
,
variance_data
,
epsilon
,
C
,
sample_size
,
num
,
ddy_data
);
ddx_data
,
scale_data
,
mean_data
,
variance_data
,
x_data
,
ddbias_data
,
dd
scale_data
,
epsilon
,
C
,
sample_size
,
num
,
dd
y_data
);
}
}
else
{
if
(
data_layout
==
DataLayout
::
kNHWC
)
{
...
...
python/paddle/fluid/tests/unittests/test_norm_nn_grad.py
浏览文件 @
8daccc9e
...
...
@@ -130,5 +130,41 @@ class TestBatchNormDoubleGradCheckCase4(TestBatchNormDoubleGradCheck):
self
.
shape
=
[
2
,
2
,
3
,
4
,
5
]
class
TestBatchNormDoubleGradCheckCase5
(
TestBatchNormDoubleGradCheck
):
@
prog_scope
()
def
func
(
self
,
place
):
prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
prog
):
np
.
random
.
seed
()
dtype
=
"float32"
eps
=
0.005
atol
=
2e-4
chn
=
self
.
shape
[
1
]
if
self
.
data_layout
==
'NCHW'
else
self
.
shape
[
-
1
]
x
=
layers
.
create_parameter
(
dtype
=
dtype
,
shape
=
self
.
shape
,
name
=
'x'
)
z
=
fluid
.
layers
.
batch_norm
(
input
=
x
,
data_layout
=
self
.
data_layout
,
use_global_stats
=
self
.
use_global_stats
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
dtype
)
w
,
b
=
prog
.
global_block
().
all_parameters
()[
1
:
3
]
w_arr
=
np
.
ones
(
chn
).
astype
(
dtype
)
b_arr
=
np
.
zeros
(
chn
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
w
,
b
],
z
,
x_init
=
[
x_arr
,
w_arr
,
b_arr
],
atol
=
atol
,
place
=
place
,
eps
=
eps
)
class
TestBatchNormDoubleGradCheckCase6
(
TestBatchNormDoubleGradCheckCase5
):
def
init_test
(
self
):
self
.
data_layout
=
'NCHW'
self
.
use_global_stats
=
True
self
.
shape
=
[
2
,
3
,
4
,
5
]
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录