batch_norm_op.cc 51.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
qingqing01 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
Q
qingqing01 已提交
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/data_layout.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

Q
qingqing01 已提交
27
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
28 29 30 31 32 33 34
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BatchNorm");

Q
qingqing01 已提交
35
  bool is_test = ctx->Attrs().Get<bool>("is_test");
36 37 38
  bool trainable_stats = ctx->Attrs().Get<bool>("trainable_statistics");
  bool test_mode = is_test && (!trainable_stats);
  if (!test_mode) {
39 40 41 42 43 44 45
    OP_INOUT_CHECK(ctx->HasOutput("MeanOut"), "Output", "MeanOut", "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("VarianceOut"), "Output", "VarianceOut",
                   "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedMean"), "Output", "SavedMean",
                   "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"), "Output", "SavedVariance",
                   "BatchNorm");
Q
Qiao Longfei 已提交
46
  }
K
Kexin Zhao 已提交
47

Q
qingqing01 已提交
48 49
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
50 51 52 53 54 55
                    platform::errors::InvalidArgument(
                        "Mean and MeanOut should share the same memory"));
  PADDLE_ENFORCE_EQ(
      ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0],
      platform::errors::InvalidArgument(
          "Variance and VarianceOut should share the same memory"));
Q
qingqing01 已提交
56 57 58 59 60

  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

61 62 63 64
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
    PADDLE_ENFORCE_EQ(mom.size(), 1,
                      platform::errors::InvalidArgument(
C
ceci3 已提交
65 66 67
                          "The input tensor MomentumTensor's size must be 1"
                          "But received: MomentumTensor's size is [%d]",
                          mom.size()));
68 69
  }

70 71
  PADDLE_ENFORCE_GE(
      x_dims.size(), 2,
K
Kaipeng Deng 已提交
72 73 74 75 76
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims, x_dims.size()));
77 78
  PADDLE_ENFORCE_LE(
      x_dims.size(), 5,
K
Kaipeng Deng 已提交
79 80 81 82 83
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
          x_dims, x_dims.size()));
Q
qingqing01 已提交
84 85

  const int64_t C =
86 87 88
      ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
89

90 91
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
92

93
  PADDLE_ENFORCE_EQ(
94 95 96 97 98 99 100 101 102 103 104 105
      scale_dim.size(), 1UL,
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
          scale_dim, scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(), 1UL,
                    platform::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
                        bias_dim, bias_dim.size()));
C
ceci3 已提交
106

107 108 109 110 111 112 113
  bool check = true;
  if ((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
                              framework::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
114
    PADDLE_ENFORCE_EQ(scale_dim[0], C,
115 116 117 118
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
                          C, scale_dim[0]));
119
    PADDLE_ENFORCE_EQ(bias_dim[0], C,
120 121 122 123
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
                          C, bias_dim[0]));
124
  }
Q
qingqing01 已提交
125 126 127 128 129 130 131 132 133 134
  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
135
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
136 137 138 139 140 141 142
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
K
Kaipeng Deng 已提交
143 144 145 146 147 148 149 150 151
  PADDLE_ENFORCE_EQ(
      bn_param_type, ctx.Input<Tensor>("Scale")->type(),
      platform::errors::InvalidArgument("Scale input should be of float type"));
  PADDLE_ENFORCE_EQ(
      bn_param_type, ctx.Input<Tensor>("Bias")->type(),
      platform::errors::InvalidArgument("Bias input should be of float type"));
  PADDLE_ENFORCE_EQ(
      bn_param_type, ctx.Input<Tensor>("Mean")->type(),
      platform::errors::InvalidArgument("Mean input should be of float type"));
Q
qingqing01 已提交
152
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
K
Kaipeng Deng 已提交
153 154
                    platform::errors::InvalidArgument(
                        "Variance input should be of float type"));
Q
qingqing01 已提交
155 156 157 158

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
159
#ifdef PADDLE_WITH_MKLDNN
160 161
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
Q
qingqing01 已提交
162 163
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
K
Kexin Zhao 已提交
164
  }
Q
qingqing01 已提交
165
#endif
Q
Qiao Longfei 已提交
166

Q
qingqing01 已提交
167 168 169 170
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
187 188
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
189 190 191 192 193 194 195
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
qingqing01 已提交
196 197 198 199 200 201 202 203 204
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
K
Kaipeng Deng 已提交
205 206 207 208 209 210 211
        PADDLE_ENFORCE_GE(
            epsilon, 0.0f,
            platform::errors::InvalidArgument(
                "'epsilon' should be greater or equal than 0.0."));
        PADDLE_ENFORCE_LE(epsilon, 0.001f,
                          platform::errors::InvalidArgument(
                              "'epsilon' should be less or equal than 0.001."));
Q
qingqing01 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
227 228 229 230 231
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
247 248 249 250
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
      .AsDispensable();
Q
qingqing01 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_with_relu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
265 266 267 268 269
  AddAttr<bool>("trainable_statistics",
                "(bool, default false) Whether to calculate mean and variance "
                "in test mode. If setting true in test mode, mean and variace "
                "will be calculated by current batch statistics.")
      .SetDefault(false);
Q
qingqing01 已提交
270
  AddComment(R"DOC(
271
Batch Normalization.
Q
Qiao Longfei 已提交
272

273 274 275 276 277 278
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
279 280

)DOC");
Q
qingqing01 已提交
281
}
C
chengduo 已提交
282

Q
Qiao Longfei 已提交
283
template <typename T>
Q
QI JUN 已提交
284 285
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
286 287 288
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
289
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
290
    const bool is_test = ctx.Attr<bool>("is_test");
291
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
292 293
    const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
    bool test_mode = is_test && (!trainable_stats);
294

295
    bool global_stats = test_mode || use_global_stats;
296

Q
QI JUN 已提交
297
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
298
    DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
299 300 301

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
C
ceci3 已提交
302 303 304 305 306 307 308 309 310 311 312 313
    PADDLE_ENFORCE_GE(
        x_dims.size(), 2,
        platform::errors::InvalidArgument(
            "The size of input X's dimensions should be larger than 1."
            "But received: the size of input X's dimensions is [%d]",
            x_dims.size()));
    PADDLE_ENFORCE_LE(
        x_dims.size(), 5,
        platform::errors::InvalidArgument(
            "The size of input X's dimensions should be less than 6."
            "But received: the size of input X's dimensionss is [%d]",
            x_dims.size()));
Q
Qiao Longfei 已提交
314 315
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
316 317
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
318 319 320
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
K
Kaipeng Deng 已提交
321

Q
Qiao Longfei 已提交
322 323 324 325 326 327 328 329 330 331 332 333
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

334 335 336 337 338 339
    // input dimension is 2 and the format is NCHW. The input can be regarded
    // as NHWC format
    if (x_dims.size() == 2 && data_layout == DataLayout::kNCHW) {
      data_layout = DataLayout::kNHWC;
    }

340
    if (!global_stats) {
Q
Qiao Longfei 已提交
341 342 343 344 345 346 347 348
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

349 350 351 352 353 354
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
355 356
        // Only 1 element in normalization dimension,
        // we skip the batch norm calculation, let y = x.
357
        framework::TensorCopy(*x, ctx.GetPlace(), y);
358 359 360
        return;
      }

Q
QI JUN 已提交
361 362
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
363 364 365 366 367 368 369 370 371 372 373 374
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
375
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
389 390
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Unknown storage order: %s", data_layout_str));
Q
Qiao Longfei 已提交
391 392
      }

393 394 395 396 397 398 399
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        momentum = mom_tensor->data<float>()[0];
      }

Q
Qiao Longfei 已提交
400 401 402 403 404 405 406 407
      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
408
    if (global_stats) {
Q
Qiao Longfei 已提交
409 410 411 412 413 414 415 416 417 418 419
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
420 421
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
435 436
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
437 438 439 440 441 442 443 444
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
445
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
446 447 448 449 450 451 452 453 454
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
455 456
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Unknown storage order: %d", data_layout));
Q
Qiao Longfei 已提交
457 458 459 460
    }
  }
};

Q
qingqing01 已提交
461 462
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
463 464 465 466 467 468 469
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                 framework::GradVarName("Y"), "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "BatchNormGrad");
Q
qingqing01 已提交
470 471

  // check output
472 473
  const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
  const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));
474
  const bool has_x_grad = ctx->HasOutput(framework::GradVarName("X"));
475 476

  PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad), true,
477
                    platform::errors::NotFound(
478 479 480 481 482
                        "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
                        "or not be null at same time. But now, "
                        "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
                        has_scale_grad, has_bias_grad));

Q
qingqing01 已提交
483 484
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
K
Kaipeng Deng 已提交
485 486 487 488 489
    PADDLE_ENFORCE_EQ(
        !ctx->Attrs().Get<bool>("use_mkldnn"), true,
        platform::errors::InvalidArgument(
            "Using global stats during training is not supported "
            "in gradient op kernel of batch_norm_mkldnn_op now."));
Q
qingqing01 已提交
490
  }
Q
Qiao Longfei 已提交
491

492 493 494 495
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormGrad");
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
496

497 498 499 500 501 502 503 504 505
  const int C =
      ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

  // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
  if (has_scale_grad) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
506
  }
507 508 509
  if (has_x_grad) {
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }
Q
qingqing01 已提交
510
}
Q
Qiao Longfei 已提交
511

Q
qingqing01 已提交
512 513 514 515
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
K
Kaipeng Deng 已提交
516 517
    PADDLE_THROW(
        platform::errors::InvalidArgument("can't find gradient variable of Y"));
Q
qingqing01 已提交
518 519 520 521 522 523 524 525
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
K
Kaipeng Deng 已提交
526 527
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
Q
qingqing01 已提交
528
  }
529

Q
qingqing01 已提交
530 531 532
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
533
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
534

535
#ifdef PADDLE_WITH_MKLDNN
536 537
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, data_type)) {
Q
qingqing01 已提交
538 539 540
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
541
#endif
542

543
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
Q
qingqing01 已提交
544
}
Q
Qiao Longfei 已提交
545

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
framework::OpKernelType BatchNormGradOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "X") || (var_name == framework::GradVarName("Y"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
Qiao Longfei 已提交
571
template <typename T>
Q
QI JUN 已提交
572
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
573 574 575 576 577
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
K
Kaipeng Deng 已提交
578
    const auto *bias = ctx.Input<Tensor>("Bias");
Q
Qiao Longfei 已提交
579 580 581
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
582
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
C
ceci3 已提交
583
    bool use_global_stats = ctx.Attr<bool>("use_global_stats");
584
    const bool is_test = ctx.Attr<bool>("is_test");
585
    const float epsilon = ctx.Attr<float>("epsilon");
586
    DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
587

K
Kaipeng Deng 已提交
588 589 590 591
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

C
ceci3 已提交
592 593
    use_global_stats = is_test || use_global_stats;

K
Kaipeng Deng 已提交
594 595 596 597 598 599 600 601 602
    // batch_norm with inplace as false will take X as grad input, which
    // is same as cuDNN batch_norm backward calculation, batch_norm
    // with inplace as true only take Y as input and X should be calculate
    // by inverse operation of batch_norm on Y
    const Tensor *x;
    bool is_inplace;
    if (ctx.HasInput("Y")) {
      x = ctx.Input<Tensor>("Y");
      is_inplace = true;
603 604 605 606 607 608
      // if the input of batch norm is stop_gradient, d_x is null.
      if (d_x) {
        PADDLE_ENFORCE_EQ(d_x, d_y,
                          platform::errors::InvalidArgument(
                              "X@GRAD and Y@GRAD not inplace in inplace mode"));
      }
K
Kaipeng Deng 已提交
609 610 611
    } else {
      x = ctx.Input<Tensor>("X");
      is_inplace = false;
612 613 614 615 616
      if (d_x) {
        PADDLE_ENFORCE_NE(
            d_x, d_y, platform::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD inplaced in non-inplace mode"));
      }
K
Kaipeng Deng 已提交
617 618
    }

Q
Qiao Longfei 已提交
619 620 621
    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
C
ceci3 已提交
622 623 624 625 626 627 628 629 630 631 632 633
    PADDLE_ENFORCE_GE(
        x_dims.size(), 2,
        platform::errors::InvalidArgument(
            "The size of input X's dimensions should be larger than 1."
            "But received: the size of input X's dimensions is [%d]",
            x_dims.size()));
    PADDLE_ENFORCE_LE(
        x_dims.size(), 5,
        platform::errors::InvalidArgument(
            "The size of input X's dimensions should be less than 6."
            "But received: the size of input X's dimensions is [%d]",
            x_dims.size()));
Q
Qiao Longfei 已提交
634 635
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
636 637
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
638 639
    const int sample_size = x->numel() / N / C;

640 641 642 643 644 645
    // input dimension is 2 and the format is NCHW. The input can be regarded as
    // NHWC format
    if (x_dims.size() == 2 && data_layout == DataLayout::kNCHW) {
      data_layout = DataLayout::kNHWC;
    }

Q
Qiao Longfei 已提交
646
    // init output
647 648 649
    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
    }
650 651 652 653 654 655 656 657

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
Z
Zeng Jinle 已提交
658
      inv_var_tensor.Resize({C});
659 660 661 662
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

663
      inv_var_tmp = (var_arr + epsilon).sqrt().inverse();
664 665 666 667
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
K
Kaipeng Deng 已提交
668
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
669 670 671 672 673 674 675 676 677 678 679
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
680 681 682 683 684

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
685 686
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
687

688 689 690 691
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
692

693
    if (d_x && (N * sample_size) == 1 && !use_global_stats) {
694
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
695 696 697
      return;
    }

698 699
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
700

L
lvmengsi 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    Tensor dy_sum;
    dy_sum.Resize({C});
    dy_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_sum_arr(dy_sum.mutable_data<T>(ctx.GetPlace()),
                                      C);

    Tensor dy_mul_x_sub_mean_mul_invstd_sum;
    dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
    dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
        dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace()), C);

    dy_sum_arr.setZero();
    dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

K
Kaipeng Deng 已提交
716 717 718 719 720 721 722
    // inplace calculation
    // Y:  ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    // X: (y - bias) / scale / (inv_var) + est_mean
    //   formula transform ====>
    //    (y - bias) / (scale * inv_var) + est_mean
Q
QI JUN 已提交
723 724
    switch (data_layout) {
      case DataLayout::kNCHW: {
K
Kaipeng Deng 已提交
725 726 727 728 729 730 731 732 733 734 735
        if (is_inplace) {
          auto px = *x;
          EigenArrayMap<T> x_data(px.mutable_data<T>(ctx.GetPlace()),
                                  sample_size, N * C);
          ConstEigenArrayMap<T> y_data(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            x_data.col(nc) = (y_data.col(nc) - bias_arr(nc % C)) /
                                 scale_inv_var_nhw(nc % C) / scale_coefff +
                             mean_arr(nc % C);
          }
        }
Q
Qiao Longfei 已提交
736 737 738
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);

L
lvmengsi 已提交
739 740 741 742 743 744 745 746
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          dy_sum_arr(c) += d_y_arr.col(nc).sum();
          dy_mul_x_sub_mean_mul_invstd_sum_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }

747
        if (d_scale && d_bias) {
L
lvmengsi 已提交
748 749
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
Q
Qiao Longfei 已提交
750
        }
L
lvmengsi 已提交
751

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
        if (d_x) {
          EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                   sample_size, N * C);
          if (!use_global_stats) {
            for (int nc = 0; nc < N * C; ++nc) {
              int c = nc % C;
              d_x_arr.col(nc) =
                  scale_inv_var_nhw(c) *
                  (d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) -
                   (x_arr.col(nc) - mean_arr[c]) *
                       dy_mul_x_sub_mean_mul_invstd_sum_arr(c) *
                       inv_var_arr(c));
            }
          } else {
            for (int nc = 0; nc < N * C; ++nc) {
              int c = nc % C;
              d_x_arr.col(nc) = scale_inv_var_nhw(c) * d_y_arr.col(nc);
            }
770
          }
Q
Qiao Longfei 已提交
771 772 773
        }
        break;
      }
Q
QI JUN 已提交
774
      case DataLayout::kNHWC: {
K
Kaipeng Deng 已提交
775 776 777 778 779 780 781 782 783 784 785
        if (is_inplace) {
          auto px = *x;
          EigenArrayMap<T> x_data(px.mutable_data<T>(ctx.GetPlace()), C,
                                  N * sample_size);
          ConstEigenArrayMap<T> y_data(x->data<T>(), C, N * sample_size);
          for (int nhw = 0; nhw < N * sample_size; nhw++) {
            x_data.col(nhw) = (y_data.col(nhw) - bias_arr) / scale_inv_var_nhw /
                                  scale_coefff +
                              mean_arr;
          }
        }
Q
Qiao Longfei 已提交
786 787 788
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);

L
lvmengsi 已提交
789 790 791 792 793
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          dy_sum_arr += d_y_arr.col(nhw);
          dy_mul_x_sub_mean_mul_invstd_sum_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
        }
794 795

        if (d_scale && d_bias) {
L
lvmengsi 已提交
796 797
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
798 799
        }

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
        if (d_x) {
          EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                   N * sample_size);
          if (!use_global_stats) {
            for (int nhw = 0; nhw < N * sample_size; ++nhw) {
              d_x_arr.col(nhw) =
                  scale_inv_var_nhw *
                  (d_y_arr.col(nhw) * N * sample_size - dy_sum_arr -
                   (x_arr.col(nhw) - mean_arr) *
                       dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr);
            }
          } else {
            for (int nhw = 0; nhw < N * sample_size; ++nhw) {
              d_x_arr.col(nhw) = scale_inv_var_nhw * d_y_arr.col(nhw);
            }
815
          }
Q
Qiao Longfei 已提交
816 817 818 819
        }
        break;
      }
      default:
820 821
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Unknown storage order: %s", data_layout_str));
Q
Qiao Longfei 已提交
822 823 824 825
    }
  }
};

H
hong 已提交
826
template <typename T>
827
void BatchNormGradMaker<T>::Apply(GradOpPtr<T> op) const {
828 829 830 831 832 833 834 835
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
836 837 838
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
839 840

  // used when setting use_global_stats True during training
841
  if (BOOST_GET_CONST(bool, this->GetAttr("use_global_stats"))) {
842 843 844
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
845

846
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
847

848 849 850 851
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
}
Y
Yu Yang 已提交
852

853 854 855 856 857 858 859 860
template <typename T>
void BatchNormDoubleGradMaker<T>::Apply(GradOpPtr<T> op) const {
  op->SetType("batch_norm_grad_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("SavedMean", this->Input("SavedMean"));
  op->SetInput("SavedVariance", this->Input("SavedVariance"));
  if (BOOST_GET_CONST(bool, this->GetAttr("use_global_stats"))) {
861
    op->SetInput("Mean", this->Input("Mean"));
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    op->SetInput("Variance", this->Input("Variance"));
  }
  op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
  op->SetInput("DDScale", this->OutputGrad(framework::GradVarName("Scale")));
  op->SetInput("DDBias", this->OutputGrad(framework::GradVarName("Bias")));
  op->SetInput("DY", this->Input(framework::GradVarName("Y")));

  op->SetAttrMap(this->Attrs());
  op->SetOutput("DX", this->InputGrad("X"));
  op->SetOutput("DScale", this->InputGrad("Scale"));
  op->SetOutput("DDY", this->InputGrad(framework::GradVarName("Y")));
}

void BatchNormDoubleGradOp::InferShape(
    framework::InferShapeContext *ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale",
                 "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "BatchNormDoubleGrad");

  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
    OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "VarianceOut",
                   "BatchNormDoubleGrad");
  }

  OP_INOUT_CHECK(ctx->HasInput("DY"), "Input", "DY", "BatchNormDoubleGrad");

  // check output
  OP_INOUT_CHECK(ctx->HasOutput("DX"), "Output", "DX", "BatchNormDoubleGrad");

  const auto x_dims = ctx->GetInputDim("X");
897 898 899 900 901 902 903
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
  const int C =
      ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
  if (ctx->HasOutput("DX")) {
    ctx->SetOutputDim("DX", x_dims);
  }
  if (ctx->HasOutput("DScale")) {
    ctx->SetOutputDim("DScale", {C});
  }
  if (ctx->HasOutput("DDY")) {
    ctx->ShareDim("X", "DDY");
  }
}

framework::OpKernelType BatchNormDoubleGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar("DY");
  if (var == nullptr) {
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
  }
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}

template <typename T>
class BatchNormDoubleGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *X = ctx.Input<Tensor>("X");
    const auto *Scale = ctx.Input<Tensor>("Scale");
    const auto *dY = ctx.Input<Tensor>("DY");
    const auto *Saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *Saved_variance = ctx.Input<Tensor>("SavedVariance");
    const float epsilon = ctx.Attr<float>("epsilon");
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const bool is_test = ctx.Attr<bool>("is_test");

    PADDLE_ENFORCE_EQ(
        is_test, false,
        platform::errors::InvalidArgument(
            "`is_test = True` CANNOT be used in train program. If "
            "you want to use global status in pre_train model, "
            "please set `use_global_stats = True`"));

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    const auto *ddX = ctx.Input<Tensor>("DDX");
    const auto *ddScale = ctx.Input<Tensor>("DDScale");
    const auto *ddBias = ctx.Input<Tensor>("DDBias");

    auto *dX = ctx.Output<Tensor>("DX");
    auto *dScale = ctx.Output<Tensor>("DScale");
    auto *ddY = ctx.Output<Tensor>("DDY");
    dX->mutable_data<T>(ctx.GetPlace());
    ddY->mutable_data<T>(ctx.GetPlace());

    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();

    const auto &x_dims = X->dims();
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int sample_size = X->numel() / C;
    math::SetConstant<platform::CPUDeviceContext, T> set_constant;

    const T *mean_data = Saved_mean->data<T>();
    const T *inv_var_data = Saved_variance->data<T>();

    Tensor inv_var_tensor;
    if (use_global_stats) {
985
      const auto *running_mean = ctx.Input<Tensor>("Mean");
986
      const auto *running_variance = ctx.Input<Tensor>("Variance");
987
      mean_data = running_mean->data<T>();
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
      inv_var_tensor.Resize({C});

      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

      inv_var_tmp = (var_arr + epsilon).sqrt().inverse();
      inv_var_data = running_inv_var_data;
    }

    // transpose NCHW -> NHWC for easy calculate
    Tensor transformed_x(X->type());
    Tensor transformed_dy(dY->type());
    Tensor transformed_ddx(ddX->type());

    Tensor transformed_dx(dX->type());
    Tensor transformed_ddy(ddY->type());
    if (data_layout == DataLayout::kNCHW && x_dims.size() > 2) {
      VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
      // Input Tensor
      ResizeToChannelLast<platform::CPUDeviceContext, T>(ctx, X,
                                                         &transformed_x);
      TransToChannelLast<platform::CPUDeviceContext, T>(ctx, X, &transformed_x);
      ResizeToChannelLast<platform::CPUDeviceContext, T>(ctx, dY,
                                                         &transformed_dy);
      TransToChannelLast<platform::CPUDeviceContext, T>(ctx, dY,
                                                        &transformed_dy);
      ResizeToChannelLast<platform::CPUDeviceContext, T>(ctx, ddX,
                                                         &transformed_ddx);
      TransToChannelLast<platform::CPUDeviceContext, T>(ctx, ddX,
                                                        &transformed_ddx);
      // Output Tensor
      ResizeToChannelLast<platform::CPUDeviceContext, T>(ctx, dX,
                                                         &transformed_dx);
      ResizeToChannelLast<platform::CPUDeviceContext, T>(ctx, ddY,
                                                         &transformed_ddy);
    } else {
      transformed_x.ShareDataWith(*X);
      transformed_dy.ShareDataWith(*dY);
      transformed_ddx.ShareDataWith(*ddX);

      transformed_dx.ShareDataWith(*dX);
      transformed_ddy.ShareDataWith(*ddY);
    }

    ConstEigenArrayMap<T> x_arr(transformed_x.data<T>(), C, sample_size);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    Tensor mean_tile;
    mean_tile.Resize({C, sample_size});
    mean_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> mean_tile_data(mean_tile.mutable_data<T>(ctx.GetPlace()),
                                    C, sample_size);

    Tensor inv_var_tile;
    inv_var_tile.Resize({C, sample_size});
    inv_var_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> inv_var_tile_data(
        inv_var_tile.mutable_data<T>(ctx.GetPlace()), C, sample_size);

    mean_tile_data = mean_arr.replicate(1, sample_size);
    inv_var_tile_data = inv_var_arr.replicate(1, sample_size);

    Tensor Scale_data;
    if (!Scale) {
      Scale_data.mutable_data<T>({C}, ctx.GetPlace());
      set_constant(dev_ctx, &Scale_data, static_cast<T>(1));
    }
    ConstEigenVectorArrayMap<T> scale_arr(
        Scale ? Scale->data<T>() : Scale_data.data<T>(), C);

    Tensor scale_tile;
    scale_tile.Resize({C, sample_size});
    scale_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> scale_tile_data(scale_tile.mutable_data<T>(ctx.GetPlace()),
                                     C, sample_size);
    scale_tile_data = scale_arr.replicate(1, sample_size);

    ConstEigenArrayMap<T> dy_arr(transformed_dy.data<T>(), C, sample_size);
    ConstEigenArrayMap<T> ddx_arr(transformed_ddx.data<T>(), C, sample_size);

    Tensor x_sub_mean_mul_invstd;
    x_sub_mean_mul_invstd.Resize({C, sample_size});
    x_sub_mean_mul_invstd.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> x_sub_mean_mul_invstd_arr(
        x_sub_mean_mul_invstd.mutable_data<T>(ctx.GetPlace()), C, sample_size);
    x_sub_mean_mul_invstd_arr = (x_arr - mean_tile_data) * inv_var_tile_data;

    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
      EigenArrayMap<T> dx_arr(transformed_dx.mutable_data<T>(ctx.GetPlace()), C,
                              sample_size);
      dx_arr.setZero();
      if (use_global_stats) {
        // math: dx = (ddscale * dy) * inv_var
        if (ddScale) {
          ConstEigenVectorArrayMap<T> ddscale_arr(ddScale->data<T>(), C);
          Tensor ddscale_tile;
          ddscale_tile.Resize({C, sample_size});
          EigenArrayMap<T> ddscale_tile_data(
              ddscale_tile.mutable_data<T>(ctx.GetPlace()), C, sample_size);
          ddscale_tile_data = ddscale_arr.replicate(1, sample_size);

          dx_arr = dy_arr * ddscale_tile_data * inv_var_tile_data;
        }
      } else {
        // math: dx = scale * ((x - mean) * inv_var / NxHxW * (np.mean(ddx,
        // axis=(n,h,w)) *
        //          np.sum(dy, axis=(n,h,w)) -
        //          np.sum(dy * ddx, axis=(n,h,w)) + 3 * np.mean(dy * (x -
        //          mean),
        //          axis=(n,h,w)) * inv_var.pow(2) *
        //          np.sum(ddx * (x - mean), axis=(n,h,w))) + inv_var.pow(3) /
        //          NxHxW *
        //          np.sum(ddx * (x - mean)) *
        //          (np.mean(dy, axis=(n,h,w)) - dy) + inv_var.pow(3) / NxHxW *
        //          np.sum(dy,
        //          axis=(n,h,w)) * (x - mean) *
1107
        //          (np.mean(ddx, axis=(n,h,w)) - ddx)) + ddr * (dy * inv_var -
1108 1109 1110 1111
        //          inv_var
        //          *
        //          np.mean(dy, axis=(n,h,w)) -
        //          inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean),
1112
        //          axis=(n,h,w)))
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

        if (ddX) {
          dx_arr +=
              (x_sub_mean_mul_invstd_arr * inv_var_tile_data *
               inv_var_tile_data / sample_size)
                  .colwise() *
              (ddx_arr.rowwise().sum() * dy_arr.rowwise().sum() / sample_size -
               (dy_arr * ddx_arr).rowwise().sum() +
               3. * (dy_arr * x_sub_mean_mul_invstd_arr).rowwise().sum() *
                   (ddx_arr * x_sub_mean_mul_invstd_arr).rowwise().sum() /
                   sample_size);

          dx_arr += (inv_var_tile_data * inv_var_tile_data).colwise() *
                    (ddx_arr * x_sub_mean_mul_invstd_arr).rowwise().sum() /
                    sample_size *
                    (dy_arr.rowwise().sum() / sample_size - dy_arr);

          dx_arr += (inv_var_tile_data * inv_var_tile_data).colwise() *
                    (dy_arr * x_sub_mean_mul_invstd_arr).rowwise().sum() /
                    sample_size *
                    (ddx_arr.rowwise().sum() / sample_size - ddx_arr);

          dx_arr = scale_tile_data * dx_arr;
        }
        if (ddScale) {
          ConstEigenVectorArrayMap<T> ddscale_arr(ddScale->data<T>(), C);
          Tensor ddscale_tile;
          ddscale_tile.Resize({C, sample_size});
          EigenArrayMap<T> ddscale_tile_data(
              ddscale_tile.mutable_data<T>(ctx.GetPlace()), C, sample_size);
          ddscale_tile_data = ddscale_arr.replicate(1, sample_size);

          dx_arr += (dy_arr * inv_var_tile_data -
                     (dy_arr.rowwise().sum().replicate(1, sample_size) /
                      sample_size) *
                         inv_var_tile_data -
                     x_sub_mean_mul_invstd_arr * inv_var_tile_data *
                         (dy_arr * x_sub_mean_mul_invstd_arr)
                             .rowwise()
                             .sum()
                             .replicate(1, sample_size) /
                         sample_size) *
                    ddscale_tile_data;
        }
      }
      if (data_layout == DataLayout::kNCHW) {
        VLOG(3) << "Transform batchnorm output from NHWC to NCHW";
        TransToChannelFirst<paddle::platform::CPUDeviceContext, T>(
            ctx, &transformed_dx, dX);
      }
    }
    if (dScale) {
      dScale->mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> dscale_arr(dScale->mutable_data<T>(ctx.GetPlace()),
                                        C);
      dscale_arr.setZero();
      if (use_global_stats) {
        // math: dscale = np.sum(ddx * dy, axis=(n,h,w)) * inv_var
        if (ddX) {
          dscale_arr = (ddx_arr * dy_arr * inv_var_tile_data).rowwise().sum();
        }
      } else {
        // math: dscale = inv_var * (dy - np.mean(dy, axis=(n,h,w) - (x-mean) *
        //            inv_var.pow(2) * np.mean(dy * (x-mean), axis=(n,h,w)))) *
        //            ddx
        if (ddX) {
          Tensor first_grad;
          first_grad.Resize({C, sample_size});
          EigenArrayMap<T> first_grad_arr(
              first_grad.mutable_data<T>(ctx.GetPlace()), C, sample_size);
          first_grad_arr.setZero();

          first_grad_arr +=
              inv_var_tile_data *
              (dy_arr -
               dy_arr.rowwise().sum().replicate(1, sample_size) / sample_size -
               x_sub_mean_mul_invstd_arr *
                   (dy_arr * x_sub_mean_mul_invstd_arr)
                       .rowwise()
                       .sum()
                       .replicate(1, sample_size) /
                   sample_size);
          dscale_arr = (first_grad_arr * ddx_arr).rowwise().sum();
        }
      }
    }

    if (ddY) {
      ddY->mutable_data<T>(ctx.GetPlace());
      EigenArrayMap<T> ddy_arr(transformed_ddy.mutable_data<T>(ctx.GetPlace()),
                               C, sample_size);
      ddy_arr.setZero();
      if (use_global_stats) {
1206 1207
        // math: ddy = r * ddx * inv_var + ddbias +
        //           ddscale * (x - mean) * inv_var
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        if (ddX) {
          ddy_arr = scale_tile_data * ddx_arr * inv_var_tile_data;
        }
      } else {
        // math: ddy = (x - mean) * inv_var * ddscale + ddbias +
        //           scale * inv_var * (ddx - (x - mean) * inv_var.pow(2) *
        //           np.mean(ddx * (x - mean), axis=(n,h,w)))
        if (ddX) {
          ddy_arr +=
              scale_tile_data * inv_var_tile_data *
              (ddx_arr -
               ddx_arr.rowwise().sum().replicate(1, sample_size) / sample_size -
               x_sub_mean_mul_invstd_arr *
                   (ddx_arr * x_sub_mean_mul_invstd_arr)
                       .rowwise()
                       .sum()
                       .replicate(1, sample_size) /
                   sample_size);
        }
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
      }
      if (ddScale) {
        ConstEigenVectorArrayMap<T> ddscale_arr(ddScale->data<T>(), C);
        Tensor ddscale_tile;
        ddscale_tile.Resize({C, sample_size});
        EigenArrayMap<T> ddscale_tile_data(
            ddscale_tile.mutable_data<T>(ctx.GetPlace()), C, sample_size);
        ddscale_tile_data = ddscale_arr.replicate(1, sample_size);

        ddy_arr += x_sub_mean_mul_invstd_arr * ddscale_tile_data;
      }
1238

1239 1240 1241 1242 1243 1244 1245
      if (ddBias) {
        ConstEigenVectorArrayMap<T> ddbias_arr(ddBias->data<T>(), C);
        Tensor ddbias_tile;
        ddbias_tile.Resize({C, sample_size});
        EigenArrayMap<T> ddbias_tile_data(
            ddbias_tile.mutable_data<T>(ctx.GetPlace()), C, sample_size);
        ddbias_tile_data = ddbias_arr.replicate(1, sample_size);
1246

1247
        ddy_arr += ddbias_tile_data;
1248
      }
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
      if (data_layout == DataLayout::kNCHW) {
        VLOG(3) << "Transform batchnorm output from NHWC to NCHW";
        TransToChannelFirst<paddle::platform::CPUDeviceContext, T>(
            ctx, &transformed_ddy, ddY);
      }
    }
  }
};

DECLARE_INPLACE_OP_INFERER(BatchNormDoubleGradOpInplaceInferer, {"DY", "DDY"});

Q
Qiao Longfei 已提交
1261 1262 1263 1264
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
1265
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
H
hong 已提交
1266 1267 1268
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
1269 1270 1271 1272 1273
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp,
                  ops::BatchNormDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(batch_norm_grad_grad, ops::BatchNormDoubleGradOp,
                  ops::BatchNormDoubleGradOpInplaceInferer);
Y
Yu Yang 已提交
1274

Q
QI JUN 已提交
1275
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
1276 1277
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
1278 1279
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
1280 1281
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);
1282 1283 1284 1285
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad_grad,
    ops::BatchNormDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);