test_dist_transpiler.py 49.1 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import functools
16 17
import gc
import math
18
import unittest
19

20
import numpy as np
T
tangwei12 已提交
21

22 23
gc.set_debug(gc.DEBUG_COLLECTABLE)

24
import paddle
25
import paddle.fluid as fluid
26

Y
Yancey 已提交
27

W
Wu Yi 已提交
28
class TranspilerTest(unittest.TestCase):
Y
Yancey 已提交
29
    def setUp(self):
W
Wu Yi 已提交
30 31 32 33 34 35 36 37 38 39 40 41
        self.trainer_id = 0
        self.trainers = 2
        self.pservers = 2
        # NOTE: we do not actually bind this port
        self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
        self.pserver1_ep = "127.0.0.1:6174"
        self.pserver2_ep = "127.0.0.1:6175"
        self.sync_mode = True
        self.transpiler = None

    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
42 43 44 45 46 47 48
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
49
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
50
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
51
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
52 53 54 55 56
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)

    def get_main_program(self):
        main = fluid.Program()
57
        main.random_seed = 1
W
Wu Yi 已提交
58 59 60 61 62
        with fluid.program_guard(main):
            self.net_conf()
        self.origin_prog = main.clone()
        return main

1
123malin 已提交
63
    def get_trainer(self, config=None, sync_mode=True):
G
gongweibao 已提交
64 65
        src = fluid.default_startup_program().clone()

1
123malin 已提交
66
        t = self._transpiler_instance(config, sync_mode=True)
G
gongweibao 已提交
67

W
Wu Yi 已提交
68
        trainer_main = t.get_trainer_program(wait_port=False)
G
gongweibao 已提交
69 70
        trainer_startup = fluid.default_startup_program()

71 72
        assert src.num_blocks == 1
        assert trainer_startup.num_blocks == src.num_blocks
G
gongweibao 已提交
73 74

        return trainer_main, trainer_startup
W
Wu Yi 已提交
75

Q
qiaolongfei 已提交
76 77
    def get_pserver(self, ep, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
78 79 80 81
        pserver = t.get_pserver_program(ep)
        startup = t.get_startup_program(ep, pserver)
        return pserver, startup

Q
qiaolongfei 已提交
82
    def _transpiler_instance(self, config=None, sync_mode=True):
W
Wu Yi 已提交
83 84
        if not self.transpiler:
            main = self.get_main_program()
G
gongweibao 已提交
85
            self.transpiler = fluid.DistributeTranspiler(config=config)
86 87 88 89 90 91 92
            self.transpiler.transpile(
                self.trainer_id,
                program=main,
                pservers=self.pserver_eps,
                trainers=self.trainers,
                sync_mode=sync_mode,
            )
G
gongweibao 已提交
93

W
Wu Yi 已提交
94
        return self.transpiler
Y
Yancey 已提交
95

Q
qiaolongfei 已提交
96 97
    def transpiler_test_impl(self):
        pass
W
Wu Yi 已提交
98

Y
Yancey 已提交
99
    def test_transpiler(self):
Q
qiaolongfei 已提交
100 101
        main = fluid.Program()
        startup = fluid.Program()
T
tangwei12 已提交
102 103 104
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                self.transpiler_test_impl()
105 106 107 108 109 110
        # NOTE: run gc.collect to eliminate pybind side objects to
        # prevent random double-deallocate when inherited in python.
        del self.transpiler
        del main
        del startup
        gc.collect()
Q
qiaolongfei 已提交
111 112 113 114


class TestBasicModel(TranspilerTest):
    def transpiler_test_impl(self):
W
Wu Yi 已提交
115 116 117
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

G
gongweibao 已提交
118 119
        trainer, trainer_startup = self.get_trainer()

T
tianshuo78520a 已提交
120
        # split var blocks should be in startup program
G
gongweibao 已提交
121 122 123 124 125 126 127 128
        self.assertTrue("fc_w.block0" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w.block1" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w" in trainer_startup.global_block().vars)
        self.assertTrue("fc_b" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w@GRAD" not in trainer_startup.global_block().vars)
        self.assertTrue("fc_b@GRAD" not in trainer_startup.global_block().vars)

        src = [op.type for op in trainer_startup.global_block().ops]
129 130 131 132 133 134 135 136 137
        dst = [
            'fill_constant',
            'fill_constant',
            'uniform_random',
            'recv',
            'recv',
            'fetch_barrier',
            'concat',
        ]
G
gongweibao 已提交
138 139

        self.assertEqual(src, dst)
W
Wu Yi 已提交
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        self.assertEqual(
            [op.type for op in trainer.global_block().ops],
            [
                'mul',
                'elementwise_add',
                'elementwise_sub',
                'square',
                'mean',
                'fill_constant',
                'mean_grad',
                'square_grad',
                'elementwise_sub_grad',
                'elementwise_add_grad',
                'send',
                'mul_grad',
                'split_byref',
                'send',
                'send_barrier',
                'recv',
                'recv',
                'fetch_barrier',
                'concat',
            ],
        )
Y
Yancey 已提交
165 166 167

        self.assertEqual(len(pserver.blocks), 3)
        # block0: listen_and_serv
168 169 170
        self.assertEqual(
            [op.type for op in pserver.blocks[0].ops], ["listen_and_serv"]
        )
W
Wu Yi 已提交
171
        # block1~2: optimize pass
172 173 174
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops], ["sum", "scale", "sgd"]
        )
Y
Yancey 已提交
175
        # confirm startup program
176 177 178 179
        self.assertEqual(
            [op.type for op in startup.global_block().ops],
            ["fill_constant", "fill_constant", "uniform_random"],
        )
Y
Yancey1989 已提交
180
        # the variable #fc_w will be split into two blocks
Y
Yancey 已提交
181 182
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
W
Wu Yi 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


G
gongweibao 已提交
204
class TestBasicModelWithLargeBlockSize(TranspilerTest):
Q
qiaolongfei 已提交
205
    def transpiler_test_impl(self):
G
gongweibao 已提交
206 207 208 209 210 211
        config = fluid.DistributeTranspilerConfig()
        config.min_block_size = 1048576

        pserver, startup = self.get_pserver(self.pserver1_ep, config)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)

G
gongweibao 已提交
212
        trainer, _ = self.get_trainer(config)
G
gongweibao 已提交
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        self.assertEqual(
            [op.type for op in trainer.global_block().ops],
            [
                'mul',
                'elementwise_add',
                'elementwise_sub',
                'square',
                'mean',
                'fill_constant',
                'mean_grad',
                'square_grad',
                'elementwise_sub_grad',
                'elementwise_add_grad',
                'send',
                'mul_grad',
                'send',
                'send_barrier',
                'recv',
                'recv',
                'fetch_barrier',
            ],
        )
G
gongweibao 已提交
236 237 238

        self.assertEqual(len(pserver.blocks), 2)
        # block0: listen_and_serv
239 240 241
        self.assertEqual(
            [op.type for op in pserver.blocks[0].ops], ["listen_and_serv"]
        )
G
gongweibao 已提交
242
        # block1~2: optimize pass
243 244 245
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops], ["sum", "scale", "sgd"]
        )
G
gongweibao 已提交
246
        # confirm startup program
247 248 249 250
        self.assertEqual(
            [op.type for op in startup.global_block().ops],
            ["fill_constant", "fill_constant"],
        )
G
gongweibao 已提交
251 252
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup2.global_block().var("fc_w")
253
        self.assertEqual(fc_w_var.shape, (1000, 1000))
G
gongweibao 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


W
Wu Yi 已提交
275 276
class TestNoSliceVar(TranspilerTest):
    def setUp(self):
277
        super().setUp()
W
Wu Yi 已提交
278

Q
qiaolongfei 已提交
279
    def transpiler_test_impl(self):
G
gongweibao 已提交
280 281 282 283 284
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        _, startup = self.get_pserver(self.pserver1_ep, config)
        _, startup2 = self.get_pserver(self.pserver2_ep, config)
W
Wu Yi 已提交
285

286
        if "fc_w" in startup.global_block().vars:
W
Wu Yi 已提交
287
            fc_w_var = startup.global_block().vars["fc_w"]
288
        elif "fc_w" in startup2.global_block().vars:
W
Wu Yi 已提交
289 290 291
            fc_w_var = startup2.global_block().vars["fc_w"]

        self.assertEqual(fc_w_var.shape, (1000, 1000))
Y
Yancey 已提交
292 293


W
Wu Yi 已提交
294 295 296
class TestLRDecay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
297 298 299 300 301 302 303
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
304
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
305
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
306
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
307
        sgd_optimizer = fluid.optimizer.SGD(
308 309 310 311 312 313 314
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True,
            )
        )
W
Wu Yi 已提交
315 316
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
317
    def transpiler_test_impl(self):
W
Wu Yi 已提交
318
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
319
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
320 321 322

        self.assertEqual(len(pserver.blocks), 4)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
323 324 325 326 327 328 329 330 331 332 333 334 335 336
        self.assertEqual(
            lr_decay_ops,
            [
                "increment",
                "cast",
                "fill_constant",
                "elementwise_div",
                "floor",
                "fill_constant",
                "elementwise_pow",
                "fill_constant",
                "elementwise_mul",
            ],
        )
W
Wu Yi 已提交
337 338


T
tangwei12 已提交
339 340 341 342
class TestFakeInit(TranspilerTest):
    def net_conf(self):
        dict_size, embedding_size, neg_num = 10000, 8, 5

343 344 345 346 347 348 349 350 351
        input_word = fluid.layers.data(
            name="input_word", shape=[1], dtype='int64', lod_level=1
        )
        true_word = fluid.layers.data(
            name='true_label', shape=[1], dtype='int64', lod_level=1
        )
        neg_word = fluid.layers.data(
            name="neg_label", shape=[1], dtype='int64', lod_level=1
        )
T
tangwei12 已提交
352 353 354 355 356 357 358
        inputs = [input_word, true_word, neg_word]

        init_width = 0.5 / embedding_size
        input_emb = fluid.layers.embedding(
            input=inputs[0],
            is_sparse=True,
            size=[dict_size, embedding_size],
359 360 361 362 363
            param_attr=fluid.ParamAttr(
                name='emb',
                initializer=fluid.initializer.Uniform(-init_width, init_width),
            ),
        )
T
tangwei12 已提交
364 365 366 367 368 369

        true_emb_w = fluid.layers.embedding(
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(
370 371 372
                name='emb_w', initializer=fluid.initializer.Constant(value=0.0)
            ),
        )
T
tangwei12 已提交
373 374 375 376 377 378

        true_emb_b = fluid.layers.embedding(
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, 1],
            param_attr=fluid.ParamAttr(
379 380 381
                name='emb_b', initializer=fluid.initializer.Constant(value=0.0)
            ),
        )
T
tangwei12 已提交
382

383
        neg_word_reshape = paddle.reshape(inputs[2], shape=[-1, 1])
T
tangwei12 已提交
384 385
        neg_word_reshape.stop_gradient = True

386 387 388 389 390 391
        neg_emb_w = fluid.layers.embedding(
            input=neg_word_reshape,
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(name='emb_w', learning_rate=1.0),
        )
T
tangwei12 已提交
392

393
        neg_emb_w_re = paddle.reshape(
394 395
            neg_emb_w, shape=[-1, neg_num, embedding_size]
        )
T
tangwei12 已提交
396

397 398 399 400 401 402
        neg_emb_b = fluid.layers.embedding(
            input=neg_word_reshape,
            is_sparse=True,
            size=[dict_size, 1],
            param_attr=fluid.ParamAttr(name='emb_b', learning_rate=1.0),
        )
T
tangwei12 已提交
403

404
        neg_emb_b_vec = paddle.reshape(neg_emb_b, shape=[-1, neg_num])
T
tangwei12 已提交
405

406
        true_logits = paddle.add(
407
            paddle.sum(
408
                paddle.multiply(input_emb, true_emb_w),
409 410 411 412 413 414
                dim=1,
                keep_dim=True,
            ),
            true_emb_b,
        )

415
        input_emb_re = paddle.reshape(input_emb, shape=[-1, 1, embedding_size])
416

K
kangguangli 已提交
417
        neg_matmul = paddle.matmul(input_emb_re, neg_emb_w_re, transpose_y=True)
418
        neg_matmul_re = paddle.reshape(neg_matmul, shape=[-1, neg_num])
419
        neg_logits = paddle.add(neg_matmul_re, neg_emb_b_vec)
T
tangwei12 已提交
420
        # nce loss
421 422 423
        label_ones = fluid.layers.fill_constant_batch_size_like(
            true_logits, shape=[-1, 1], value=1.0, dtype='float32'
        )
T
tangwei12 已提交
424
        label_zeros = fluid.layers.fill_constant_batch_size_like(
425 426
            true_logits, shape=[-1, neg_num], value=0.0, dtype='float32'
        )
T
tangwei12 已提交
427

428
        true_xent = paddle.nn.functional.binary_cross_entropy_with_logits(
429 430
            true_logits, label_ones
        )
431
        neg_xent = paddle.nn.functional.binary_cross_entropy_with_logits(
432 433
            neg_logits, label_zeros
        )
434
        cost = paddle.add(
435 436
            paddle.sum(true_xent, axis=1),
            paddle.sum(neg_xent, axis=1),
437
        )
438
        avg_cost = paddle.mean(cost)
T
tangwei12 已提交
439 440

        sgd_optimizer = fluid.optimizer.SGD(
441 442 443 444 445 446 447
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True,
            )
        )
T
tangwei12 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        trainer, startup = self.get_trainer()

        fake_init_ops = []
        for op in startup.global_block().ops:
            if op.type == "fake_init":
                fake_init_ops.append(op)

        self.assertEqual(len(fake_init_ops), 3)


461 462 463
class TestDecayedAdagrad(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
464 465 466 467 468 469 470
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
471
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
472
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
473
        avg_cost = paddle.mean(cost)
474 475 476 477 478 479 480 481
        opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


482 483 484
class TestFtrl(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
485 486 487 488 489 490 491
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
492
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
493
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
494
        avg_cost = paddle.mean(cost)
495 496 497 498 499 500 501 502
        opt = fluid.optimizer.Ftrl(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


W
Wu Yi 已提交
503 504 505
class TestLRDecayConditional(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
506 507 508 509 510 511 512
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
513
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
514
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
515
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
516
        sgd_optimizer = fluid.optimizer.SGD(
517 518 519 520
            learning_rate=fluid.layers.piecewise_decay(
                [10000, 20000], [1.0, 0.5, 1.0]
            )
        )
W
Wu Yi 已提交
521 522
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
523
    def transpiler_test_impl(self):
W
Wu Yi 已提交
524
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
525
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
526 527 528 529

        serv_op = pserver.blocks[0].ops[0]
        sub_blocks = []
        optimize_blocks = []
G
gongweibao 已提交
530
        for b in serv_op.all_attrs()["optimize_blocks"]:
W
Wu Yi 已提交
531 532 533 534 535 536 537
            optimize_blocks.append(b.idx)
        for b in pserver.blocks:
            if b.idx not in optimize_blocks:
                sub_blocks.append(b.idx)

        self.assertEqual(len(pserver.blocks), 7)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        self.assertEqual(
            lr_decay_ops,
            [
                "increment",
                "cast",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "conditional_block",
            ],
        )
W
Wu Yi 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        # test the condition blocks
        for b in sub_blocks:
            if b == 0:
                continue
            block = pserver.blocks[b]
            self.assertEqual([op.type for op in block.ops], ["assign"])


class TestL2Decay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
574 575 576 577 578
            param_attr=fluid.ParamAttr(
                name='fc_w', regularizer=fluid.regularizer.L2Decay()
            ),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
579
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
580
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
581
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
582
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
583 584 585 586 587 588

        def filter(param):
            return param.name == "fc_w"

        clip = fluid.clip.GradientClipByValue(0.1, need_clip=filter)
        sgd_optimizer.minimize(avg_cost, grad_clip=clip)
W
Wu Yi 已提交
589

Q
qiaolongfei 已提交
590
    def transpiler_test_impl(self):
W
Wu Yi 已提交
591
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
592
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
593 594

        self.assertEqual(len(pserver.blocks), 3)
595 596 597 598 599 600 601 602
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops],
            ["sum", "scale", "clip", "sgd"],
        )
        self.assertEqual(
            [op.type for op in pserver.blocks[2].ops],
            ["sum", "scale", "clip", "scale", "sum", "sgd"],
        )
W
Wu Yi 已提交
603 604
        # TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer

Y
Yancey 已提交
605

T
typhoonzero 已提交
606 607 608
class TestL2DecayWithPiecewise(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
609 610 611 612 613 614 615
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
T
typhoonzero 已提交
616
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
617
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
618
        avg_cost = paddle.mean(cost)
T
typhoonzero 已提交
619 620 621 622
        base_lr = 1.0
        bd = [1, 10, 20, 30]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        sgd_optimizer = fluid.optimizer.Momentum(
623 624 625
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr
            ),
T
typhoonzero 已提交
626
            momentum=0.9,
627 628
            regularization=fluid.regularizer.L2Decay(1e-4),
        )
T
typhoonzero 已提交
629 630
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
631
    def transpiler_test_impl(self):
T
typhoonzero 已提交
632
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
633
        trainer, _ = self.get_trainer()
T
typhoonzero 已提交
634 635

        self.assertEqual(len(pserver.blocks), 9)
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops],
            [
                "increment",
                "cast",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "conditional_block",
            ],
        )
        self.assertEqual(
            [op.type for op in pserver.blocks[7].ops],
            ["sum", "scale", "scale", "sum", "momentum"],
        )
        self.assertEqual(
            [op.type for op in pserver.blocks[8].ops],
            ["sum", "scale", "scale", "sum", "momentum"],
        )
Y
Yancey 已提交
679 680


Q
Qiao Longfei 已提交
681 682 683 684
class TestEmptyPserverOptimizeBlocks(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        # only one parameter
685 686 687 688 689 690 691
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=False,
        )
Q
Qiao Longfei 已提交
692
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
693
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
694
        avg_cost = paddle.mean(cost)
Q
Qiao Longfei 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=1.0)
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        pserver, startup = self.get_pserver(ep=self.pserver2_ep, config=config)

        self.assertEqual(len(pserver.blocks), 2)
        self.assertEqual(len(pserver.blocks[1].ops), 0)


708
class TestDistLookupTableBase(TranspilerTest):
Q
Qiao Longfei 已提交
709
    def network_with_table(self, is_sparse, is_distributed):
T
tangwei12 已提交
710 711
        self.table_size = 1000
        self.emb_size = 64
T
tangwei12 已提交
712
        self.lookup_table_name = 'shared_w'
T
tangwei12 已提交
713

Q
Qiao Longfei 已提交
714
        def emb_pool(ids, table_name, is_distributed):
715 716 717 718 719 720 721 722
            emb = fluid.layers.embedding(
                input=ids,
                size=[self.table_size, self.emb_size],
                dtype='float32',
                param_attr=table_name,
                is_sparse=is_sparse,
                is_distributed=is_distributed,
            )
723 724 725
            pool = fluid.layers.sequence_pool(input=emb, pool_type='average')
            return pool

726 727 728 729 730 731 732 733 734
        title_ids = fluid.layers.data(
            name='title_ids', shape=[1], dtype='int64', lod_level=1
        )
        brand_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1
        )
        profile_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1
        )
Q
Qiao Longfei 已提交
735 736 737
        title_emb = emb_pool(title_ids, self.lookup_table_name, is_distributed)
        brand_emb = emb_pool(brand_ids, self.lookup_table_name, is_distributed)
        profile_emb = emb_pool(profile_ids, "profile_emb", False)
738 739 740 741 742 743 744 745 746 747
        fc0 = fluid.layers.concat(
            input=[title_emb, brand_emb, profile_emb], axis=1
        )
        predict = fluid.layers.fc(
            input=fc0,
            size=2,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
748 749 750

        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        cost = fluid.layers.cross_entropy(input=predict, label=label)
751
        avg_cost = paddle.mean(cost)
752 753 754 755
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)


Q
qiaolongfei 已提交
756 757 758 759 760 761 762
class TestLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

763
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
764 765
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
766 767 768 769
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
770 771
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
772 773 774 775
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
776

777 778
        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
779 780 781 782
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
783

G
gongweibao 已提交
784
        trainer, _ = self.get_trainer()
Q
qiaolongfei 已提交
785 786
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_selected_rows',
            'send',
            'send_barrier',
            'recv',
            'recv',
            'fetch_barrier',
Q
qiaolongfei 已提交
821 822 823 824
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


825 826 827 828 829 830 831
class TestDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

832
        self.assertEqual(len(pserver1.blocks), 6)
833 834
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
835 836 837 838
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
839
        # 4 prefetch -> lookup_sparse_table_read for data0
840 841 842 843
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
844
        # 2 optimize for table sgd
845 846 847
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops], ["sum", "sgd"]
        )
848
        # 3 prefetch -> lookup_sparse_table_read for data0
849 850 851 852
        self.assertEqual(
            [op.type for op in pserver1.blocks[4].ops],
            ["lookup_sparse_table_read"],
        )
Q
Qiao Longfei 已提交
853 854 855 856 857 858
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer, trainer_startup = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
            'split_ids',
            'prefetch',
            'merge_ids',
            'sequence_pool',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_ids',
            'send',
            'send_barrier',
            'recv',
            'recv',
            'fetch_barrier',
Q
Qiao Longfei 已提交
894 895 896
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
        startup_ops = [
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'uniform_random',
            'uniform_random',
            'recv',
            'recv',
            'recv',
            'fetch_barrier',
            'concat',
            'fake_init',
Q
Qiao Longfei 已提交
919
        ]
920 921 922
        self.assertEqual(
            [op.type for op in trainer_startup.blocks[0].ops], startup_ops
        )
Q
Qiao Longfei 已提交
923 924


Q
qiaolongfei 已提交
925 926 927 928 929 930
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
931
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
932

933
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
934 935
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
936 937 938 939
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
940 941
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
942 943 944 945
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["adam", "scale", "scale"],
        )
946 947
        # 3 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
948 949 950 951
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops],
            ["adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
952

G
gongweibao 已提交
953
        trainer, _ = self.get_trainer(config)
Q
qiaolongfei 已提交
954 955
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_selected_rows',
            'send',
            'recv',
            'recv',
Q
qiaolongfei 已提交
988 989 990 991
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
992 993 994 995 996 997 998
class TestAsyncDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()

Q
qiaolongfei 已提交
999
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
1000

1001
        self.assertEqual(len(pserver1.blocks), 6)
Q
qiaolongfei 已提交
1002 1003
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
1004 1005 1006 1007
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["adam", "scale", "scale"],
        )
1008
        # 2 optimize for table adam
1009 1010 1011 1012
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["adam", "scale", "scale"],
        )
1013 1014
        # 3 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[3].ops], ["sgd"])
1015
        # 4 prefetch -> lookup_sparse_table_read for data0
1016 1017 1018 1019
        self.assertEqual(
            [op.type for op in pserver1.blocks[4].ops],
            ["lookup_sparse_table_read"],
        )
1020 1021
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])
Q
qiaolongfei 已提交
1022

Q
Qiao Longfei 已提交
1023
        trainer, trainer_startup = self.get_trainer(config)
Q
qiaolongfei 已提交
1024 1025
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
            'split_ids',
            'prefetch',
            'merge_ids',
            'sequence_pool',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_ids',
            'send',
            'recv',
            'recv',
Q
Qiao Longfei 已提交
1059
        ]
Q
qiaolongfei 已提交
1060
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
Q
Qiao Longfei 已提交
1061
        startup_ops = [
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'uniform_random',
            'uniform_random',
            'recv',
            'recv',
            'recv',
            'fetch_barrier',
            'concat',
            'fake_init',
Q
Qiao Longfei 已提交
1084
        ]
1085 1086 1087
        self.assertEqual(
            [op.type for op in trainer_startup.blocks[0].ops], startup_ops
        )
Q
qiaolongfei 已提交
1088 1089


T
tangwei12 已提交
1090
class TestDistLookupTableSliceSize(TestDistLookupTableBase):
T
tangwei12 已提交
1091 1092 1093 1094 1095
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
T
tangwei12 已提交
1096
        pserver1, _ = self.get_pserver(self.pserver1_ep, config)
T
tangwei12 已提交
1097 1098 1099

        self.assertTrue(self.transpiler.has_distributed_lookup_table)
        lookup_table_var = pserver1.global_block().vars[
1100 1101
            self.transpiler.table_name
        ]
T
tangwei12 已提交
1102 1103 1104
        row_size = lookup_table_var.shape[0]
        calc_row_size = int(math.ceil(self.table_size / self.pservers))
        self.assertEqual(row_size, calc_row_size)
T
tangwei12 已提交
1105 1106


T
tangwei12 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115
class TestDistArgsInProgram(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()

        self.assertTrue(trainer._is_distributed)
        self.assertTrue(trainer._is_chief)
1116 1117 1118 1119 1120 1121
        self.assertEqual(
            trainer._distributed_lookup_table, self.lookup_table_name
        )
        self.assertEqual(
            trainer._endpoints, [self.pserver1_ep, self.pserver2_ep]
        )
T
tangwei12 已提交
1122 1123


W
Wu Yi 已提交
1124 1125 1126
class TestRMSPropOptimizer(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
1127 1128 1129 1130 1131 1132 1133
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
1134
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
1135
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
1136
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

        self.assertEqual(len(pserver.blocks), 3)
        # block1~2: optimize pass
1146 1147 1148 1149
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops],
            ["sum", "scale", "rmsprop"],
        )
W
Wu Yi 已提交
1150 1151 1152 1153 1154 1155 1156
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
        moment_var = startup.global_block().var("momentum_1")
        self.assertEqual(moment_var.shape, (500, 1000))


T
tangwei12 已提交
1157 1158 1159
class TestLoadSliceVar(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
1160 1161 1162 1163 1164 1165 1166
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
T
tangwei12 已提交
1167
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
1168
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
1169
        avg_cost = paddle.mean(cost)
T
tangwei12 已提交
1170 1171 1172 1173 1174 1175 1176
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, _ = self.get_pserver(self.pserver1_ep)
        pserver2, _ = self.get_pserver(self.pserver2_ep)

1177
        vars_ps1 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
1178 1179
            self.pserver1_ep
        )
1180
        vars_ps2 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
1181 1182
            self.pserver2_ep
        )
1183 1184 1185 1186

        self.assertTrue(vars_ps1)
        self.assertTrue(vars_ps2)

1187
        for idx in range(len(vars_ps1)):
1188 1189 1190 1191 1192 1193
            total_numel = 0
            ps1_numel, ps2_numel = 0, 0

            ps1_var = vars_ps1[idx]

            if not ps1_var.is_slice:
1194 1195 1196 1197 1198 1199
                total_numel = functools.reduce(
                    lambda x, y: x * y, vars_ps1[idx].origin.shape
                )
                ps1_numel = functools.reduce(
                    lambda x, y: x * y, vars_ps1[idx].slice.shape
                )
1200 1201 1202 1203 1204 1205 1206
            else:
                ps2_var = None
                for var in vars_ps2:
                    if var.origin.name == ps1_var.origin.name:
                        ps2_var = var
                        break

1207 1208 1209 1210 1211 1212 1213 1214 1215
                total_numel = functools.reduce(
                    lambda x, y: x * y, ps1_var.origin.shape
                )
                ps1_numel = functools.reduce(
                    lambda x, y: x * y, ps1_var.slice.shape
                )
                ps2_numel = functools.reduce(
                    lambda x, y: x * y, ps2_var.slice.shape
                )
1216 1217

            self.assertEqual(total_numel, ps1_numel + ps2_numel)
T
tangwei12 已提交
1218 1219


W
Wu Yi 已提交
1220 1221
class TestNCCL2Transpile(TranspilerTest):
    def test_nccl2_transpile(self):
T
tangwei12 已提交
1222
        if fluid.core.is_compiled_with_cuda():  # test nccl2 only with cuda
J
JiabinYang 已提交
1223 1224 1225 1226 1227 1228 1229
            main = fluid.Program()
            startup = fluid.Program()
            with fluid.program_guard(main, startup):
                self.net_conf()

            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
W
Wu Yi 已提交
1230
            config.wait_port = False
J
JiabinYang 已提交
1231
            t = fluid.DistributeTranspiler(config=config)
1232 1233 1234 1235 1236 1237
            t.transpile(
                0,
                trainers="127.0.0.1:6174,127.0.0.1:6175",
                current_endpoint="127.0.0.1:6174",
                startup_program=startup,
            )
J
JiabinYang 已提交
1238 1239 1240
            print([op.type for op in startup.global_block().ops])
            self.assertEqual(startup.global_block().ops[-1].type, "gen_nccl_id")
            self.assertIsNotNone(startup.global_block().vars.get("NCCLID"))
1241
            gc.collect()
J
JiabinYang 已提交
1242 1243
        else:
            pass
W
Wu Yi 已提交
1244 1245


Q
Qiao Longfei 已提交
1246 1247 1248
# test for remote prefetch
class TestRemoteLookupTable(TestDistLookupTableBase):
    def net_conf(self):
1249
        import os
1250

1251
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
Q
Qiao Longfei 已提交
1252
        self.network_with_table(is_sparse=True, is_distributed=False)
Q
Qiao Longfei 已提交
1253 1254 1255 1256 1257 1258 1259

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 4)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
1260 1261 1262 1263
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
1264 1265
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
1266 1267 1268 1269
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
1270 1271 1272

        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
1273 1274 1275 1276
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
1277 1278 1279 1280

        trainer, _ = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_selected_rows',
            'send',
            'send_barrier',
            'recv',
            'recv',
            'fetch_barrier',
Q
Qiao Longfei 已提交
1315 1316 1317 1318
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
# test for remote prefetch
class TestRemoteNce(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):

        num_total_classes = 20
        sampler = "uniform"
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        w_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 10],
                dtype='float32',
                name='nce_w',
                initializer=fluid.initializer.ConstantInitializer(),
            )
        )
        b_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 1],
                dtype='float32',
                name='nce_b',
                initializer=fluid.initializer.ConstantInitializer(),
            )
        )

1351
        cost = paddle.static.nn.nce(
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
            input=input,
            label=label,
            num_total_classes=num_total_classes,
            sampler=sampler,
            custom_dist=nid_freq_arr.tolist(),
            sample_weight=None,
            param_attr='nce_w',
            bias_attr='nce_b',
            seed=1,
            num_neg_samples=5,
            is_sparse=is_sparse,
        )
1364
        avg_cost = paddle.mean(cost)
1365 1366 1367 1368 1369 1370
        # optimizer
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
1371

1372 1373 1374 1375 1376
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
T
tangwei12 已提交
1377

1378 1379
        out_vars = ["nce_w"]
        in_vars = ["nce_b"]
T
tangwei12 已提交
1380 1381 1382

        recv_var_names = []

1383 1384
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
T
tangwei12 已提交
1385 1386 1387 1388 1389 1390 1391
                for var in op.output("Out"):
                    recv_var_names.append(var)

        for out_var in out_vars:
            self.assertFalse(out_var in recv_var_names)
        for in_var in in_vars:
            self.assertTrue(in_var in recv_var_names)
1392 1393


J
JiabinYang 已提交
1394 1395 1396 1397
# test for remote prefetch
class TestRemoteHsigmoid(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):

1398
        num_total_classes = 3
J
JiabinYang 已提交
1399

1400
        input = fluid.layers.data(name="input", shape=[1], dtype="float32")
J
JiabinYang 已提交
1401
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        path_table = fluid.layers.data(
            name='path_table', shape=[3], dtype='int64'
        )
        path_code = fluid.layers.data(
            name='path_code', shape=[3], dtype='int64'
        )
        w_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 10],
                dtype='float32',
                name='hs_w',
                initializer=fluid.initializer.ConstantInitializer(),
            )
        )
        b_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[3, 1],
                dtype='float32',
                name='hs_b',
                initializer=fluid.initializer.ConstantInitializer(),
            )
        )
J
JiabinYang 已提交
1428

1429
        emb = fluid.layers.embedding(
J
JiabinYang 已提交
1430
            input=input,
1431 1432
            is_sparse=is_sparse,
            size=[3, 3],
1433 1434 1435 1436 1437 1438 1439
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Normal(
                    scale=1 / math.sqrt(num_total_classes)
                )
            ),
        )

1440 1441 1442 1443 1444 1445 1446 1447
        loss = paddle.nn.HSigmoidLoss(
            feature_size=emb.shape[1],
            num_classes=num_total_classes,
            is_custom=True,
            is_sparse=is_sparse,
        )

        cost = loss(
1448 1449 1450 1451 1452
            input=emb,
            label=label,
            path_table=path_table,
            path_code=path_code,
        )
1453

1454
        avg_cost = paddle.mean(cost)
J
JiabinYang 已提交
1455 1456 1457 1458 1459 1460
        # optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
1461

J
JiabinYang 已提交
1462 1463 1464 1465 1466
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
1467
        params_to_check = list()
J
JiabinYang 已提交
1468
        for op in trainer.blocks[0].ops:
1469 1470 1471 1472 1473
            if op.type == "hierarchical_sigmoid":
                params_to_check = [op.input("W")[0], op.input("Bias")[0]]
                for name in ["epmap", "table_names", "epmap"]:
                    assert op.has_attr(name)
                    if name == "epmap":
1474
                        assert op.attr(name)[0] == '127.0.0.1:6174'
1475
                    elif name == "table_names":
1476
                        assert op.attr(name)[0] == 'hierarchical_sigmoid_0.w_0'
1477 1478 1479 1480 1481
                    else:
                        assert op.attr(name) == 3
            elif op.type == "lookup_table":
                params_to_check.append(op.input("W")[0])
            else:
J
JiabinYang 已提交
1482
                pass
1483 1484 1485 1486
        op_count = 0
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
                assert len(op.output("Out")) == 1
1487
                assert op.output("Out")[0] == 'hierarchical_sigmoid_0.b_0'
1488 1489
                op_count += 1
        assert op_count == 1
J
JiabinYang 已提交
1490 1491


Y
Yancey 已提交
1492 1493
if __name__ == "__main__":
    unittest.main()