test_dist_transpiler.py 24.9 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15 16
import math

17
import unittest
18
import paddle.fluid as fluid
Y
Yancey 已提交
19
from paddle.fluid.transpiler.distribute_transpiler import delete_ops
W
Wu Yi 已提交
20
import traceback
21

Y
Yancey 已提交
22

W
Wu Yi 已提交
23
class TranspilerTest(unittest.TestCase):
Y
Yancey 已提交
24
    def setUp(self):
W
Wu Yi 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        self.trainer_id = 0
        self.trainers = 2
        self.pservers = 2
        # NOTE: we do not actually bind this port
        self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
        self.pserver1_ep = "127.0.0.1:6174"
        self.pserver2_ep = "127.0.0.1:6175"
        self.sync_mode = True
        self.transpiler = None

    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)
        return

    def get_main_program(self):
        main = fluid.Program()
        with fluid.program_guard(main):
            self.net_conf()
        self.origin_prog = main.clone()
        return main

Q
qiaolongfei 已提交
56 57
    def get_trainer(self, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
58 59
        return t.get_trainer_program()

Q
qiaolongfei 已提交
60 61
    def get_pserver(self, ep, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
62 63 64 65
        pserver = t.get_pserver_program(ep)
        startup = t.get_startup_program(ep, pserver)
        return pserver, startup

Q
qiaolongfei 已提交
66
    def _transpiler_instance(self, config=None, sync_mode=True):
W
Wu Yi 已提交
67 68
        if not self.transpiler:
            main = self.get_main_program()
G
gongweibao 已提交
69
            self.transpiler = fluid.DistributeTranspiler(config=config)
W
Wu Yi 已提交
70 71 72 73
            self.transpiler.transpile(
                self.trainer_id,
                program=main,
                pservers=self.pserver_eps,
Q
qiaolongfei 已提交
74 75
                trainers=self.trainers,
                sync_mode=sync_mode)
G
gongweibao 已提交
76

W
Wu Yi 已提交
77
        return self.transpiler
Y
Yancey 已提交
78

Q
qiaolongfei 已提交
79 80
    def transpiler_test_impl(self):
        pass
W
Wu Yi 已提交
81

Y
Yancey 已提交
82
    def test_transpiler(self):
Q
qiaolongfei 已提交
83 84 85 86 87 88 89 90
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            self.transpiler_test_impl()


class TestBasicModel(TranspilerTest):
    def transpiler_test_impl(self):
W
Wu Yi 已提交
91 92 93
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

Y
Yancey 已提交
94
        trainer = self.get_trainer()
W
Wu Yi 已提交
95 96 97 98 99 100 101

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'split_byref', 'send',
            'send_barrier', 'recv', 'recv', 'fetch_barrier', 'concat'
        ])
Y
Yancey 已提交
102 103 104 105 106

        self.assertEqual(len(pserver.blocks), 3)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
W
Wu Yi 已提交
107
        # block1~2: optimize pass
Y
Yancey 已提交
108 109 110
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
W
Wu Yi 已提交
111 112
        self.assertEqual([op.type for op in startup.global_block().ops],
                         ["fill_constant", "fill_constant", "uniform_random"])
Y
Yancey1989 已提交
113
        # the variable #fc_w will be split into two blocks
Y
Yancey 已提交
114 115
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
W
Wu Yi 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


G
gongweibao 已提交
137
class TestBasicModelWithLargeBlockSize(TranspilerTest):
Q
qiaolongfei 已提交
138
    def transpiler_test_impl(self):
G
gongweibao 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        config = fluid.DistributeTranspilerConfig()
        config.min_block_size = 1048576

        pserver, startup = self.get_pserver(self.pserver1_ep, config)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)

        trainer = self.get_trainer(config)

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'send_barrier',
            'recv', 'recv', 'fetch_barrier'
        ])

        self.assertEqual(len(pserver.blocks), 2)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
        self.assertEqual([op.type for op in startup.global_block().ops],
Q
qiaolongfei 已提交
163
                         ["fill_constant", "fill_constant"])
G
gongweibao 已提交
164 165
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup2.global_block().var("fc_w")
166
        self.assertEqual(fc_w_var.shape, (1000, 1000))
G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


W
Wu Yi 已提交
188 189 190 191
class TestNoSliceVar(TranspilerTest):
    def setUp(self):
        super(TestNoSliceVar, self).setUp()

Q
qiaolongfei 已提交
192
    def transpiler_test_impl(self):
G
gongweibao 已提交
193 194 195 196 197
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        _, startup = self.get_pserver(self.pserver1_ep, config)
        _, startup2 = self.get_pserver(self.pserver2_ep, config)
W
Wu Yi 已提交
198

199
        if "fc_w" in startup.global_block().vars:
W
Wu Yi 已提交
200
            fc_w_var = startup.global_block().vars["fc_w"]
201
        elif "fc_w" in startup2.global_block().vars:
W
Wu Yi 已提交
202 203 204
            fc_w_var = startup2.global_block().vars["fc_w"]

        self.assertEqual(fc_w_var.shape, (1000, 1000))
Y
Yancey 已提交
205 206


W
Wu Yi 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
class TestLRDecay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True))
        sgd_optimizer.minimize(avg_cost)
        return

Q
qiaolongfei 已提交
227
    def transpiler_test_impl(self):
W
Wu Yi 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer = self.get_trainer()

        self.assertEqual(len(pserver.blocks), 4)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "elementwise_div", "floor",
            "fill_constant", "elementwise_pow", "fill_constant",
            "elementwise_mul"
        ])


class TestLRDecayConditional(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.piecewise_decay([10000, 20000],
                                                       [1.0, 0.5, 1.0]))
        sgd_optimizer.minimize(avg_cost)
        return

Q
qiaolongfei 已提交
257
    def transpiler_test_impl(self):
W
Wu Yi 已提交
258 259 260 261 262 263
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer = self.get_trainer()

        serv_op = pserver.blocks[0].ops[0]
        sub_blocks = []
        optimize_blocks = []
G
gongweibao 已提交
264
        for b in serv_op.all_attrs()["optimize_blocks"]:
W
Wu Yi 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
            optimize_blocks.append(b.idx)
        for b in pserver.blocks:
            if b.idx not in optimize_blocks:
                sub_blocks.append(b.idx)

        self.assertEqual(len(pserver.blocks), 7)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
        # test the condition blocks
        for b in sub_blocks:
            if b == 0:
                continue
            block = pserver.blocks[b]
            self.assertEqual([op.type for op in block.ops], ["assign"])


class TestL2Decay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(
                name='fc_w',
                regularizer=fluid.regularizer.L2Decay(),
                gradient_clip=fluid.clip.GradientClipByValue(0.1)),
            bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)
        return

Q
qiaolongfei 已提交
306
    def transpiler_test_impl(self):
W
Wu Yi 已提交
307 308 309 310 311 312 313 314 315 316 317
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer = self.get_trainer()

        self.assertEqual(len(pserver.blocks), 3)
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "clip", "sgd"])
        self.assertEqual(
            [op.type for op in pserver.blocks[2].ops],
            ["sum", "scale", "clip", "scale", "elementwise_add", "sgd"])
        # TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer

Y
Yancey 已提交
318

T
typhoonzero 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
class TestL2DecayWithPiecewise(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        base_lr = 1.0
        bd = [1, 10, 20, 30]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        sgd_optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
        sgd_optimizer.minimize(avg_cost)
        return

Q
qiaolongfei 已提交
341
    def transpiler_test_impl(self):
T
typhoonzero 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer = self.get_trainer()

        self.assertEqual(len(pserver.blocks), 9)
        self.assertEqual([op.type for op in pserver.blocks[1].ops], [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
        self.assertEqual(
            [op.type for op in pserver.blocks[7].ops],
            ["sum", "scale", "scale", "elementwise_add", "momentum"])
        self.assertEqual(
            [op.type for op in pserver.blocks[8].ops],
            ["sum", "scale", "scale", "elementwise_add", "momentum"])
Y
Yancey 已提交
363 364


365 366
class TestDistLookupTableBase(TranspilerTest):
    def network_with_table(self, is_sparse, is_distributed):
T
tangwei12 已提交
367 368 369
        self.table_size = 1000
        self.emb_size = 64

370 371 372
        def emb_pool(ids):
            emb = fluid.layers.embedding(
                input=ids,
T
tangwei12 已提交
373
                size=[self.table_size, self.emb_size],
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
                dtype='float32',
                param_attr='shared_w',  # share parameter
                is_sparse=is_sparse,
                is_distributed=is_distributed)
            pool = fluid.layers.sequence_pool(input=emb, pool_type='average')
            return pool

        title_ids = fluid.layers.data(
            name='title_ids', shape=[1], dtype='int64', lod_level=1)
        brand_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1)
        title_emb = emb_pool(title_ids)
        brand_emb = emb_pool(brand_ids)
        fc0 = fluid.layers.concat(input=[title_emb, brand_emb], axis=1)
        predict = fluid.layers.fc(input=fc0,
                                  size=2,
                                  act=None,
                                  param_attr=fluid.ParamAttr(name='fc_w'),
                                  bias_attr=fluid.ParamAttr(name='fc_b'))

        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)


Q
qiaolongfei 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
class TestLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 3)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["sum", "adam", "scale", "scale"])

        trainer = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
            'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean',
            'fill_constant', 'mean_grad', 'cross_entropy_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sum', 'split_selected_rows', 'send',
            'send_barrier', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
class TestDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 6)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["sum", "sgd"])
        # 3 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["lookup_sparse_table"])
        # 4 prefetch -> lookup_sparse_table for data1
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
                         ["lookup_sparse_table"])
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool', 'split_ids',
            'prefetch', 'merge_ids', 'sequence_pool', 'concat', 'mul',
            'elementwise_add', 'cross_entropy', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad', 'elementwise_add_grad', 'send',
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_ids', 'send', 'send_barrier', 'recv', 'recv',
            'fetch_barrier'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
471 472 473 474 475 476
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
477
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

        self.assertEqual(len(pserver1.blocks), 3)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["adam", "scale", "scale"])

        trainer = self.get_trainer(config)
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
            'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean',
            'fill_constant', 'mean_grad', 'cross_entropy_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sum', 'split_selected_rows', 'send', 'recv',
            'recv', 'recv', 'concat'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
503 504 505 506 507 508 509
class TestAsyncDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()

Q
qiaolongfei 已提交
510
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

        self.assertEqual(len(pserver1.blocks), 6)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
        # 2 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[2].ops], ["sgd"])
        # 3 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["lookup_sparse_table"])
        # 4 prefetch -> lookup_sparse_table for data1
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
                         ["lookup_sparse_table"])
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer = self.get_trainer(config)
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool', 'split_ids',
            'prefetch', 'merge_ids', 'sequence_pool', 'concat', 'mul',
            'elementwise_add', 'cross_entropy', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad', 'elementwise_add_grad', 'send',
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_ids', 'send', 'recv', 'recv'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


T
tangwei12 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
class TestDistLookupTableSliceSize(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config)

        self.assertTrue(self.transpiler.has_distributed_lookup_table)
        lookup_table_var = pserver1.global_block().vars[
            self.transpiler.table_name]
        row_size = lookup_table_var.shape[0]
        calc_row_size = int(math.ceil(self.table_size / self.pservers))
        self.assertEqual(row_size, calc_row_size)


W
Wu Yi 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
class TestRMSPropOptimizer(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)
        return

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

        self.assertEqual(len(pserver.blocks), 3)
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "rmsprop"])
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
        moment_var = startup.global_block().var("momentum_1")
        self.assertEqual(moment_var.shape, (500, 1000))


Y
Yancey 已提交
588 589
if __name__ == "__main__":
    unittest.main()