未验证 提交 9218e742 编写于 作者: H HongyuJia 提交者: GitHub

clean elem_arithmetic part5 unittest (#48466)

上级 96a8bbe7
......@@ -39,7 +39,7 @@ class TestPSPassWithBow(unittest.TestCase):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = paddle.sum(cond)
acc = fluid.layers.elementwise_div(
acc = paddle.divide(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'
......@@ -49,13 +49,13 @@ class TestPSPassWithBow(unittest.TestCase):
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
loss_op1 = paddle.subtract(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
),
cos_q_pt,
)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op2 = paddle.add(loss_op1, cos_q_nt)
loss_op3 = paddle.maximum(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
......
......@@ -39,7 +39,7 @@ class TestPSPassWithBow(unittest.TestCase):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = paddle.sum(cond)
acc = fluid.layers.elementwise_div(
acc = paddle.divide(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'
......@@ -49,13 +49,13 @@ class TestPSPassWithBow(unittest.TestCase):
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
loss_op1 = paddle.subtract(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
),
cos_q_pt,
)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op2 = paddle.add(loss_op1, cos_q_nt)
loss_op3 = paddle.maximum(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
......
......@@ -42,7 +42,7 @@ class TestPSPassWithBow(unittest.TestCase):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = paddle.sum(cond)
acc = fluid.layers.elementwise_div(
acc = paddle.divide(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'
......@@ -52,13 +52,13 @@ class TestPSPassWithBow(unittest.TestCase):
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
loss_op1 = paddle.subtract(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
),
cos_q_pt,
)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op2 = paddle.add(loss_op1, cos_q_nt)
loss_op3 = paddle.maximum(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
......
......@@ -43,7 +43,7 @@ class TestPSPassWithBow(unittest.TestCase):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = paddle.sum(cond)
acc = fluid.layers.elementwise_div(
acc = paddle.divide(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'
......@@ -53,13 +53,13 @@ class TestPSPassWithBow(unittest.TestCase):
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
loss_op1 = paddle.subtract(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
),
cos_q_pt,
)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op2 = paddle.add(loss_op1, cos_q_nt)
loss_op3 = paddle.maximum(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
......
......@@ -42,7 +42,7 @@ class TestPSPassWithBow(unittest.TestCase):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = paddle.sum(cond)
acc = fluid.layers.elementwise_div(
acc = paddle.divide(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'
......@@ -52,13 +52,13 @@ class TestPSPassWithBow(unittest.TestCase):
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
loss_op1 = paddle.subtract(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
),
cos_q_pt,
)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op2 = paddle.add(loss_op1, cos_q_nt)
loss_op3 = paddle.maximum(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
......
......@@ -39,7 +39,7 @@ class TestPSPassWithBow(unittest.TestCase):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = paddle.sum(cond)
acc = fluid.layers.elementwise_div(
acc = paddle.divide(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'
......@@ -49,13 +49,13 @@ class TestPSPassWithBow(unittest.TestCase):
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
loss_op1 = paddle.subtract(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
),
cos_q_pt,
)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op2 = paddle.add(loss_op1, cos_q_nt)
loss_op3 = paddle.maximum(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
......
......@@ -39,7 +39,7 @@ class TestPSPassWithBow(unittest.TestCase):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = paddle.sum(cond)
acc = fluid.layers.elementwise_div(
acc = paddle.divide(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'
......@@ -49,13 +49,13 @@ class TestPSPassWithBow(unittest.TestCase):
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
loss_op1 = paddle.subtract(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
),
cos_q_pt,
)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op2 = paddle.add(loss_op1, cos_q_nt)
loss_op3 = paddle.maximum(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
......
......@@ -39,7 +39,7 @@ class TestPSPassWithBow(unittest.TestCase):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = paddle.sum(cond)
acc = fluid.layers.elementwise_div(
acc = paddle.divide(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'
......@@ -49,13 +49,13 @@ class TestPSPassWithBow(unittest.TestCase):
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
loss_op1 = paddle.subtract(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
),
cos_q_pt,
)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op2 = paddle.add(loss_op1, cos_q_nt)
loss_op3 = paddle.maximum(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
......
......@@ -39,7 +39,7 @@ class TestPSPassWithBow(unittest.TestCase):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = paddle.sum(cond)
acc = fluid.layers.elementwise_div(
acc = paddle.divide(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'
......@@ -49,13 +49,13 @@ class TestPSPassWithBow(unittest.TestCase):
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
loss_op1 = paddle.subtract(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
),
cos_q_pt,
)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op2 = paddle.add(loss_op1, cos_q_nt)
loss_op3 = paddle.maximum(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
......
......@@ -403,9 +403,9 @@ class TestFakeInit(TranspilerTest):
neg_emb_b_vec = paddle.reshape(neg_emb_b, shape=[-1, neg_num])
true_logits = fluid.layers.elementwise_add(
true_logits = paddle.add(
paddle.sum(
fluid.layers.elementwise_mul(input_emb, true_emb_w),
paddle.multiply(input_emb, true_emb_w),
dim=1,
keep_dim=True,
),
......@@ -418,7 +418,7 @@ class TestFakeInit(TranspilerTest):
input_emb_re, neg_emb_w_re, transpose_y=True
)
neg_matmul_re = paddle.reshape(neg_matmul, shape=[-1, neg_num])
neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec)
neg_logits = paddle.add(neg_matmul_re, neg_emb_b_vec)
# nce loss
label_ones = fluid.layers.fill_constant_batch_size_like(
true_logits, shape=[-1, 1], value=1.0, dtype='float32'
......@@ -433,7 +433,7 @@ class TestFakeInit(TranspilerTest):
neg_xent = paddle.nn.functional.binary_cross_entropy_with_logits(
neg_logits, label_zeros
)
cost = fluid.layers.elementwise_add(
cost = paddle.add(
paddle.sum(true_xent, axis=1),
paddle.sum(neg_xent, axis=1),
)
......
......@@ -169,7 +169,7 @@ def lm_model(
nn = layers.concat([input, pre_hidden], 1)
gate_input = layers.matmul(x=nn, y=weight_1)
gate_input = layers.elementwise_add(gate_input, bias)
gate_input = paddle.add(gate_input, bias)
i = paddle.slice(
gate_input, axes=[1], starts=[0], ends=[hidden_size]
)
......@@ -293,7 +293,7 @@ def lm_model(
nn = layers.concat([input, pre_hidden], 1)
gate_input = layers.matmul(x=nn, y=weight_1)
gate_input = layers.elementwise_add(gate_input, bias)
gate_input = paddle.add(gate_input, bias)
i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1)
c = pre_cell * paddle.nn.functional.sigmoid(
......@@ -460,7 +460,7 @@ def lm_model(
)
projection = layers.matmul(rnn_out, softmax_weight)
projection = layers.elementwise_add(projection, softmax_bias)
projection = paddle.add(projection, softmax_bias)
projection = paddle.reshape(projection, shape=[-1, vocab_size])
loss = layers.softmax_with_cross_entropy(
......
......@@ -157,7 +157,7 @@ class EagerDeletionRecurrentOpTest1(unittest.TestCase):
x_t = rnn.step_input(x)
h = paddle.scale(
x=layers.elementwise_add(x=h_pre, y=x_t),
x=paddle.add(x=h_pre, y=x_t),
scale=self.py_rnn.scale,
)
......@@ -328,9 +328,7 @@ class EagerDeletionRecurrentOpTest2(EagerDeletionRecurrentOpTest1):
bias_attr=False,
)
h = paddle.nn.functional.sigmoid(
x=layers.elementwise_add(x=temp_l, y=temp_r)
)
h = paddle.nn.functional.sigmoid(x=paddle.add(x=temp_l, y=temp_r))
rnn.update_memory(h_pre, h)
rnn.output(h)
......@@ -504,7 +502,7 @@ class EagerDeletionRecurrentOpNoMemBootTest(EagerDeletionRecurrentOpTest1):
with rnn.step():
mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
x_t = rnn.step_input(x)
mem = layers.elementwise_add(x=mem_pre, y=x_t)
mem = paddle.add(x=mem_pre, y=x_t)
rnn.update_memory(mem_pre, mem)
rnn.output(mem)
......@@ -584,7 +582,7 @@ class EagerDeletionTwoRecurrentOpsTest(EagerDeletionRecurrentOpTest1):
with rnn_0.step():
x_t = rnn_0.step_input(x)
mem_pre = rnn_0.memory(shape=[-1, self.input_dim], batch_ref=x)
mem = layers.elementwise_add(x=mem_pre, y=x_t)
mem = paddle.add(x=mem_pre, y=x_t)
rnn_0.update_memory(mem_pre, mem)
rnn_0.output(mem)
......@@ -594,8 +592,8 @@ class EagerDeletionTwoRecurrentOpsTest(EagerDeletionRecurrentOpTest1):
x_t = rnn_1.step_input(x)
last_rnn_output = rnn_0()
last_rnn_sum = paddle.sum(last_rnn_output)
mem = layers.elementwise_add(x=x_t, y=last_rnn_sum)
y = layers.elementwise_add(x=mem_pre, y=mem)
mem = paddle.add(x=x_t, y=last_rnn_sum)
y = paddle.add(x=mem_pre, y=mem)
rnn_1.update_memory(mem_pre, mem)
rnn_1.output(y)
return rnn_1()
......@@ -693,7 +691,7 @@ class EagerDeletionFarwardOnlyRnnAndBackwardRnnTest(
x_t = forward_only_rnn.step_input(x)
h = paddle.scale(
x=layers.elementwise_add(x=h_pre, y=x_t),
x=paddle.add(x=h_pre, y=x_t),
scale=self.py_rnn.scale,
)
......@@ -709,7 +707,7 @@ class EagerDeletionFarwardOnlyRnnAndBackwardRnnTest(
x_t = rnn.step_input(x)
h = paddle.scale(
x=layers.elementwise_add(x=h_pre, y=x_t),
x=paddle.add(x=h_pre, y=x_t),
scale=self.py_rnn.scale,
)
......
......@@ -94,7 +94,7 @@ class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
y = layers.data('y', shape, False, dtype)
x.persistable = True
y.persistable = True
out = layers.elementwise_add(x, y)
out = paddle.add(x, y)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
......@@ -155,7 +155,7 @@ class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
y = layers.data('y', shape, False, dtype)
x.persistable = True
y.persistable = True
out = layers.elementwise_sub(x, y)
out = paddle.subtract(x, y)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
......@@ -291,7 +291,7 @@ class TestElementwiseAddTripleGradCheck(unittest.TestCase):
y = layers.data('y', shape, False, dtype)
x.persistable = True
y.persistable = True
out = layers.elementwise_add(x, y)
out = paddle.add(x, y)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
......
......@@ -14,6 +14,7 @@
import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program
......@@ -81,7 +82,7 @@ class TestLayer(unittest.TestCase):
image2 = fluid.layers.data(
name='pixel2', shape=[3, 48, 48], dtype='float32'
)
fluid.layers.elementwise_add(x=image1, y=image2, act='relu')
paddle.nn.functional.relu(paddle.add(x=image1, y=image2))
print(main_program)
......
......@@ -33,7 +33,7 @@ class MyLayer(fluid.Layer):
def forward(self, inputs):
x = fluid.layers.relu(inputs)
self._x_for_debug = x
x = fluid.layers.elementwise_mul(x, x)
x = paddle.multiply(x, x)
x = paddle.sum(x)
return [x]
......@@ -722,9 +722,9 @@ class TestImperative(unittest.TestCase):
inp1 = paddle.to_tensor(np_inp1)
inp2 = paddle.to_tensor(np_inp2)
if np.sum(np_inp1) < np.sum(np_inp2):
x = fluid.layers.elementwise_add(inp1, inp2)
x = paddle.add(inp1, inp2)
else:
x = fluid.layers.elementwise_sub(inp1, inp2)
x = paddle.subtract(inp1, inp2)
dygraph_result = x.numpy()
# static graph
......@@ -750,13 +750,13 @@ class TestImperative(unittest.TestCase):
with ie.true_block():
d1 = ie.input(inp_data1)
d2 = ie.input(inp_data2)
d3 = fluid.layers.elementwise_add(d1, d2)
d3 = paddle.add(d1, d2)
ie.output(d3)
with ie.false_block():
d1 = ie.input(inp_data1)
d2 = ie.input(inp_data2)
d3 = fluid.layers.elementwise_sub(d1, d2)
d3 = paddle.subtract(d1, d2)
ie.output(d3)
out = ie()
......
......@@ -76,7 +76,7 @@ class DMF(fluid.Layer):
for ul, il in zip(self._user_layers, self._item_layers):
users = ul(users)
items = il(items)
return fluid.layers.elementwise_mul(users, items)
return paddle.multiply(users, items)
class MLP(fluid.Layer):
......
......@@ -67,7 +67,7 @@ class SimpleNet(fluid.Layer):
projection = fluid.layers.matmul(
x_emb, paddle.transpose(self.embedding.weight, perm=[1, 0])
)
projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
projection = paddle.add(projection, self.softmax_bias)
projection = paddle.reshape(projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False
......
......@@ -306,9 +306,7 @@ class SimpleAttention(fluid.dygraph.Layer):
decoder_state_proj_reshape,
[-1, encoder_proj.shape[1], -1],
)
concated = fluid.layers.elementwise_add(
encoder_proj, decoder_state_expand
)
concated = paddle.add(encoder_proj, decoder_state_expand)
concated = paddle.tanh(x=concated)
attention_weight = self.fc_2(concated)
......@@ -362,7 +360,7 @@ class GRUDecoderWithAttention(fluid.dygraph.Layer):
)
fc_1 = self.fc_1_layer(context)
fc_2 = self.fc_2_layer(current_word)
decoder_inputs = fluid.layers.elementwise_add(x=fc_1, y=fc_2)
decoder_inputs = paddle.add(x=fc_1, y=fc_2)
h, _, _ = self.gru_unit(decoder_inputs, hidden_mem)
hidden_mem = h
......
......@@ -35,7 +35,7 @@ class MyLayer(fluid.Layer):
def forward(self, inputs):
x = fluid.layers.relu(inputs)
x = fluid.layers.elementwise_mul(x, x)
x = paddle.multiply(x, x)
x = paddle.sum(x)
return [x]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册