test_warpctc_op.py 23.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yiqun Liu 已提交
15 16 17
import sys
import unittest
import numpy as np
18 19
from op_test import OpTest
from test_softmax_op import stable_softmax
20
import paddle.fluid as fluid
21
import paddle.fluid.core as core
22
from paddle.fluid import Program, program_guard
23 24
import paddle
import paddle.nn.functional as F
Y
Yiqun Liu 已提交
25

L
Li Fuchen 已提交
26 27
paddle.enable_static()

28
CUDA_BLOCK_SIZE = 32
29

Y
Yiqun Liu 已提交
30 31

class CTCForward(object):
32 33 34 35 36 37 38 39 40 41 42
    def __init__(
        self,
        softmax,
        softmax_lod,
        labels,
        labels_lod,
        num_classes,
        batch_size,
        blank,
        norm_by_times,
    ):
Y
Yiqun Liu 已提交
43 44 45 46 47 48 49 50
        self.softmax = softmax
        self.softmax_lod = softmax_lod
        self.labels = labels
        self.labels_lod = labels_lod
        self.blank = blank
        self.norm_by_times = norm_by_times

        self.level = 0
51 52
        self.num_classes = num_classes
        self.batch_size = batch_size
Y
Yiqun Liu 已提交
53

54 55
        self.loss = np.zeros([self.batch_size, 1], dtype=softmax.dtype)
        self.gradient = np.zeros(self.softmax.shape, dtype=softmax.dtype)
Y
Yiqun Liu 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

        # float64
        self.EXP_MAX = sys.float_info.max
        self.EXP_MIN = sys.float_info.min
        self.LOG_ZERO = np.log(self.EXP_MIN)
        self.LOG_INFINITY = np.log(self.EXP_MAX)

    def safe_exp(self, x):
        if x <= self.LOG_ZERO:
            return 0.0
        if x >= self.LOG_INFINITY:
            return self.EXP_MAX
        return np.exp(x)

    def safe_log(self, x):
        if x <= self.EXP_MIN:
            return self.LOG_ZERO
        return np.log(x)

    # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb
    def log_div(self, x, y):
        res = x - y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb
    def log_mul(self, x, y):
        res = x + y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale,
    # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a
    def log_add(self, x, y):
        if x < y:
            t = y
            y = x
            x = t
        return x + self.safe_log(1 + self.safe_exp(y - x))

    def segment_range(self, time, total_times, total_segments):
        start = max(0, total_segments - (2 * (total_times - time)))
        end = min(total_segments, 2 * (time + 1))
        return start, end

    def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence):
        total_times = softmax_a_sequence.shape[0]
        total_segments = labels_a_sequence.shape[0] * 2 + 1

        required_times = labels_a_sequence.shape[0]
        old_label = -1
        for i in range(labels_a_sequence.shape[0]):
            # two contingous labels with the same value
            if labels_a_sequence[i, 0] == old_label:
                required_times = required_times + 1
            old_label = labels_a_sequence[i, 0]

        if total_times < required_times:
            return 0

        # calculate the forward and backward variables,
        # reference Chapter 7.3 of "Alex Grave, Supervised Sequence
        # Labelling with Recurrent Neural Networks"
125 126 127
        log_acts = np.zeros(
            [total_times, self.num_classes], dtype=softmax_a_sequence.dtype
        )
Y
Yiqun Liu 已提交
128 129 130 131 132
        for i in range(total_times):
            for j in range(self.num_classes):
                log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j])

        # calculate the forward variables
133 134 135
        forward_vars = np.zeros(
            [total_times, total_segments], dtype=softmax_a_sequence.dtype
        )
Y
Yiqun Liu 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        for i in range(total_times):
            for j in range(total_segments):
                forward_vars[i, j] = self.LOG_ZERO

        for i in range(total_times):
            # dp initialization at t0
            if i == 0:
                forward_vars[i, 0] = log_acts[0, self.blank]
                if total_segments > 1:
                    forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]]
                continue

            # dp from t1
            start, end = self.segment_range(i, total_times, total_segments)
            for k in range(end - start):
                j = k + start
                if j & 1 == 1:
M
minqiyang 已提交
153
                    label_idx = j // 2
Y
Yiqun Liu 已提交
154
                    label_val = labels_a_sequence[label_idx, 0]
155 156 157 158 159 160 161
                    fv = self.log_add(
                        forward_vars[i - 1, j], forward_vars[i - 1, j - 1]
                    )
                    if (
                        j > 1
                        and label_val != labels_a_sequence[label_idx - 1, 0]
                    ):
Y
Yiqun Liu 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174
                        fv = self.log_add(fv, forward_vars[i - 1, j - 2])
                    fv = self.log_mul(fv, log_acts[i, label_val])
                else:
                    fv = forward_vars[i - 1, j]
                    if j > 0:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 1])
                    fv = self.log_mul(fv, log_acts[i, self.blank])
                forward_vars[i, j] = fv

        # sum the last two value as log_prob
        log_prob = forward_vars[total_times - 1, total_segments - 1]
        if total_segments > 1:
            log_prob = self.log_add(
175 176
                log_prob, forward_vars[total_times - 1, total_segments - 2]
            )
Y
Yiqun Liu 已提交
177 178 179 180

        return -log_prob

    def forward(self):
181 182
        softmax_offset = 0
        labels_offset = 0
Y
Yiqun Liu 已提交
183
        for i in range(self.batch_size):
184 185 186 187 188 189
            if self.labels.shape[1] == 1:
                softmax_start_i = softmax_offset
                softmax_end_i = softmax_offset + self.softmax_lod[self.level][i]
                labels_start_i = labels_offset
                labels_end_i = labels_offset + self.labels_lod[self.level][i]

190
                softmax_a_sequence = self.softmax[
191 192
                    softmax_start_i:softmax_end_i, :
                ]
193
                labels_a_sequence = self.labels[labels_start_i:labels_end_i, :]
194 195 196
                self.loss[i] = self.forward_a_sequence(
                    softmax_a_sequence, labels_a_sequence
                )
197 198 199
                softmax_offset += self.softmax_lod[self.level][i]
                labels_offset += self.labels_lod[self.level][i]
            else:
200 201 202 203 204
                softmax_a_sequence = self.softmax[: self.softmax_lod[i], i, :]
                labels_a_sequence = self.labels[: self.labels_lod[i], :]
                self.loss[i] = self.forward_a_sequence(
                    softmax_a_sequence, labels_a_sequence
                )
205

Y
Yiqun Liu 已提交
206 207 208
        return self.loss


209 210 211 212 213 214 215 216 217 218 219
def python_api(
    logits,
    label,
    logits_length=None,
    labels_length=None,
    blank=0,
    norm_by_times=False,
):
    return paddle.fluid.layers.warpctc(
        logits, label, blank, norm_by_times, logits_length, labels_length
    )
Z
Zhong Hui 已提交
220 221


Y
Yiqun Liu 已提交
222
class TestWarpCTCOp(OpTest):
223 224
    def config(self):
        self.batch_size = 4
225
        self.num_classes = 12
226 227
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
228 229 230
        self.blank = self.num_classes - 1
        self.norm_by_times = False

Y
Yiqun Liu 已提交
231 232
    def setUp(self):
        self.op_type = "warpctc"
233
        self.config()
Y
Yiqun Liu 已提交
234

235
        logits = np.random.uniform(
236 237
            0.1, 1.0, [sum(self.logits_lod[0]), self.num_classes]
        ).astype("float32")
Y
Yiqun Liu 已提交
238 239
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
240 241 242 243 244 245 246 247 248 249 250 251 252 253
        labels = np.random.randint(
            0, self.num_classes - 1, [sum(self.labels_lod[0]), 1], dtype="int32"
        )

        ctc = CTCForward(
            softmax,
            self.logits_lod,
            labels,
            self.labels_lod,
            self.num_classes,
            self.batch_size,
            self.blank,
            self.norm_by_times,
        )
Y
Yiqun Liu 已提交
254 255 256
        loss = ctc.forward()

        max_sequence_length = 0
257
        for i in range(self.batch_size):
258 259 260
            max_sequence_length = max(
                max_sequence_length, self.logits_lod[0][i]
            )
261
        self.gradient = np.zeros(
262
            [max_sequence_length, self.batch_size, self.num_classes],
263 264
            dtype=logits.dtype,
        )
Y
Yiqun Liu 已提交
265 266

        self.inputs = {
267
            "Logits": (logits, self.logits_lod),
268
            "Label": (labels, self.labels_lod),
Y
Yiqun Liu 已提交
269 270
        }
        self.outputs = {"Loss": loss}
W
Wu Yi 已提交
271 272 273 274
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }
Y
Yiqun Liu 已提交
275 276

    def test_check_output(self):
277
        self.check_output()
Y
Yiqun Liu 已提交
278

W
wanghaoshuang 已提交
279
    def test_check_grad(self):
280
        self.outputs['WarpCTCGrad'] = self.gradient
281
        if core.is_compiled_with_rocm():
282 283 284 285 286 287
            self.check_grad(
                ["Logits"],
                "Loss",
                max_relative_error=0.009,
                check_dygraph=False,
            )
288
        else:
289 290 291 292 293 294
            self.check_grad(
                ["Logits"],
                "Loss",
                max_relative_error=0.007,
                check_dygraph=False,
            )
Y
Yiqun Liu 已提交
295

296

297 298 299 300
class TestWarpCTCOpCase1(TestWarpCTCOp):
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
301 302
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
303
        self.blank = self.num_classes - 1
304
        self.norm_by_times = False
W
Wu Yi 已提交
305 306


307 308 309 310 311 312 313 314 315 316 317 318 319
class TestWarpCTCOpWithPadding(OpTest):
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
Z
Zhong Hui 已提交
320 321
        self.python_api = python_api
        self.python_out_sig = ["Loss"]
322 323 324
        self.config()

        logits = np.random.uniform(
325 326
            0.1, 1.0, [sum(self.logits_length), self.num_classes]
        ).astype("float32")
327 328
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
329 330 331 332 333 334 335 336 337 338 339 340 341 342
        labels = np.random.randint(
            0, self.num_classes - 1, [sum(self.labels_length), 1], dtype="int32"
        )

        ctc = CTCForward(
            softmax,
            self.logits_lod,
            labels,
            self.labels_lod,
            self.num_classes,
            self.batch_size,
            self.blank,
            self.norm_by_times,
        )
343 344 345 346
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
347 348 349
            max_sequence_length = max(
                max_sequence_length, self.logits_length[i]
            )
350 351 352
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
353 354
            dtype=logits.dtype,
        )
355 356 357 358 359 360 361 362 363 364 365

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
366 367 368 369 370 371
            max_target_seq_length = max(
                max_target_seq_length, self.labels_length[i]
            )
        new_labels = np.zeros(
            [self.batch_size, max_target_seq_length], dtype="int32"
        )
372 373 374 375 376 377 378 379 380

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
381 382
            dtype=logits.dtype,
        )
383 384 385

        self.inputs = {
            "Logits": new_logits,
W
whs 已提交
386
            "Label": new_labels,
387
            "LogitsLength": self.logits_length,
388
            "LabelLength": self.labels_length,
389 390 391 392 393 394 395 396
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
Z
Zhong Hui 已提交
397
        self.check_output(check_eager=True)
398 399 400

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
401
        if core.is_compiled_with_rocm():
402 403 404 405 406 407
            self.check_grad(
                ["Logits"],
                "Loss",
                max_relative_error=0.009,
                check_dygraph=False,
            )
408
        else:
409 410 411 412 413 414
            self.check_grad(
                ["Logits"],
                "Loss",
                max_relative_error=0.007,
                check_dygraph=False,
            )
415 416 417 418 419 420 421 422 423 424


class TestWarpCTCOpWithPaddingCase1(TestWarpCTCOpWithPadding):
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
425
        self.blank = self.num_classes - 1
426
        self.norm_by_times = False
427

Y
Yiqun Liu 已提交
428

429 430 431 432 433 434 435 436 437 438 439 440 441
class TestWarpCTCOpFp64(OpTest):
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 5, 5]]
        self.labels_lod = [[3, 1, 4, 2]]
        self.logits_length = np.array([4, 1, 5, 5], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 2], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
Z
Zhong Hui 已提交
442 443
        self.python_api = python_api
        self.python_out_sig = ["Loss"]
444 445 446
        self.config()

        logits = np.random.uniform(
447 448
            0.1, 1.0, [sum(self.logits_length), self.num_classes]
        ).astype("float64")
449 450
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
451 452 453 454 455 456 457 458 459 460 461 462 463 464
        labels = np.random.randint(
            0, self.num_classes - 1, [sum(self.labels_length), 1], dtype="int32"
        )

        ctc = CTCForward(
            softmax,
            self.logits_lod,
            labels,
            self.labels_lod,
            self.num_classes,
            self.batch_size,
            self.blank,
            self.norm_by_times,
        )
465 466 467 468
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
469 470 471
            max_sequence_length = max(
                max_sequence_length, self.logits_length[i]
            )
472 473 474
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
475 476
            dtype=logits.dtype,
        )
477 478 479 480 481 482 483 484 485 486 487

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
488 489 490 491 492 493
            max_target_seq_length = max(
                max_target_seq_length, self.labels_length[i]
            )
        new_labels = np.zeros(
            [self.batch_size, max_target_seq_length], dtype="int32"
        )
494 495 496 497 498 499 500 501 502

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
503 504
            dtype=logits.dtype,
        )
505 506 507 508 509

        self.inputs = {
            "Logits": new_logits,
            "Label": new_labels,
            "LogitsLength": self.logits_length,
510
            "LabelLength": self.labels_length,
511 512 513 514 515 516 517 518
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
Z
Zhong Hui 已提交
519
        self.check_output(check_eager=True)
520 521 522

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
Z
Zhong Hui 已提交
523
        self.check_grad(["Logits"], "Loss", check_eager=True)
524 525


526 527 528
class TestWarpCTCOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
529 530 531 532 533 534
            logits = fluid.data(
                name='logits', shape=[5, 16, 6], dtype='float32'
            )
            logits_length = fluid.data(
                name='logits_length', shape=[None], dtype='int64'
            )
535
            label = fluid.data(name='label', shape=[16, 3], dtype='int32')
536 537 538
            label_length = fluid.data(
                name='labels_length', shape=[None], dtype='int64'
            )
539 540

            def test_logits_Variable():
541
                logits_data = np.random.rand(5, 16, 6).astype(logits.dtype)
542 543 544 545 546 547
                fluid.layers.warpctc(
                    input=logits_data,
                    label=label,
                    input_length=logits_length,
                    label_length=label_length,
                )
548 549 550 551 552

            self.assertRaises(TypeError, test_logits_Variable)

            def test_label_Variable():
                label_data = np.random.randint(0, 5, [5, 1]).astype("int32")
553 554 555 556 557 558
                fluid.layers.warpctc(
                    input=logits,
                    label=label_data,
                    input_length=logits_length,
                    label_length=label_length,
                )
559 560 561 562 563

            self.assertRaises(TypeError, test_label_Variable)

            def test_logits_len_Variable():
                logits_length_data = np.array([5] * 16).astype("int64")
564 565 566 567 568 569
                fluid.layers.warpctc(
                    input=logits,
                    label=label,
                    input_length=logits_length_data,
                    label_length=label_length,
                )
570 571 572 573 574

            self.assertRaises(TypeError, test_logits_len_Variable)

            def test_label_len_Variable():
                label_length_data = np.array([3] * 16).astype("int64")
575 576 577 578 579 580
                fluid.layers.warpctc(
                    input=logits,
                    label=label,
                    input_length=logits_length,
                    label_length=label_length_data,
                )
581 582 583

            self.assertRaises(TypeError, test_label_len_Variable)

584 585 586 587 588 589
    def test_dygraph_errors(self):
        def test_dygraph_with_lod():

            logits = np.random.uniform(0.1, 1.0, [20, 15]).astype("float32")
            # labels should not be blank
            labels = np.random.randint(0, 15 - 1, [15, 1], dtype="int32")
L
Li Fuchen 已提交
590 591
            softmax = paddle.to_tensor(logits)
            labels = paddle.to_tensor(labels)
592 593 594 595 596 597 598

            fluid.layers.warpctc(input=softmax, label=labels)

        paddle.disable_static()
        self.assertRaises(ValueError, test_dygraph_with_lod)
        paddle.enable_static()

599

600 601 602 603 604 605 606 607 608
class TestCTCLossAPICase(unittest.TestCase):
    def test_functinal_api(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

609
        logits = np.random.uniform(
610 611 612 613
            0.1,
            1.0,
            [max(self.logits_length), self.batch_size, self.num_classes],
        ).astype("float32")
614 615 616 617
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
618 619
            self.num_classes - 1,
            [self.batch_size, max(self.labels_length)],
620 621 622 623 624 625 626 627 628 629 630 631 632
            dtype="int32",
        )

        ctc = CTCForward(
            softmax,
            self.logits_length,
            labels,
            self.labels_length,
            self.num_classes,
            self.batch_size,
            self.blank,
            self.norm_by_times,
        )
633 634 635
        loss_np = ctc.forward()

        paddle.disable_static()
636 637 638 639
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
640 641 642 643 644 645 646 647
        loss_pd_mean = F.ctc_loss(
            softmax,
            labels,
            logits_length,
            labels_length,
            blank=self.blank,
            reduction='mean',
        )
648 649
        loss_pd_mean = loss_pd_mean.numpy()

650 651 652 653 654 655 656 657
        loss_pd_sum = F.ctc_loss(
            softmax,
            labels,
            logits_length,
            labels_length,
            blank=self.blank,
            reduction='sum',
        )
658 659 660 661 662 663
        loss_pd_sum = loss_pd_sum.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)
        loss_np_mean = (loss_np / labels_length.numpy()).mean()
        loss_np_sum = loss_np.sum()

664 665 666
        np.testing.assert_allclose(
            loss_pd_mean, loss_np_mean, rtol=1e-05, atol=1
        )
667
        np.testing.assert_allclose(loss_pd_sum, loss_np_sum, rtol=1e-05, atol=1)
668 669 670 671 672 673 674 675 676

    def test_class_api(self):
        self.batch_size = 3
        self.num_classes = 15
        self.logits_length = np.array([3, 3, 3], dtype=np.int64)
        self.labels_length = np.array([0, 1, 2], dtype=np.int64)
        self.blank = 0
        self.norm_by_times = False

677
        logits = np.random.uniform(
678 679 680 681
            0.1,
            1.0,
            [max(self.logits_length), self.batch_size, self.num_classes],
        ).astype("float32")
682 683 684 685
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            1,
686 687
            self.num_classes,
            [self.batch_size, max(self.labels_length)],
688 689 690 691 692 693 694 695 696 697 698 699 700
            dtype="int32",
        )

        ctc = CTCForward(
            softmax,
            self.logits_length,
            labels,
            self.labels_length,
            self.num_classes,
            self.batch_size,
            self.blank,
            self.norm_by_times,
        )
701 702 703
        loss_np = ctc.forward()

        paddle.disable_static()
704 705 706 707
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
708

709 710 711
        loss_pd = paddle.nn.CTCLoss(self.blank, 'none')(
            softmax, labels, logits_length, labels_length
        )
712 713 714 715
        loss_pd = loss_pd.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)

716
        np.testing.assert_allclose(loss_pd, loss_np, rtol=1e-05, atol=1)
717 718


Y
Yiqun Liu 已提交
719 720
if __name__ == "__main__":
    unittest.main()