test_warpctc_op.py 17.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yiqun Liu 已提交
17 18 19
import sys
import unittest
import numpy as np
20 21
from op_test import OpTest
from test_softmax_op import stable_softmax
22 23
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
24 25
import paddle
import paddle.nn.functional as F
Y
Yiqun Liu 已提交
26

27 28
CUDA_BLOCK_SIZE = 512

Y
Yiqun Liu 已提交
29 30

class CTCForward(object):
31 32
    def __init__(self, softmax, softmax_lod, labels, labels_lod, num_classes,
                 batch_size, blank, norm_by_times):
Y
Yiqun Liu 已提交
33 34 35 36 37 38 39 40
        self.softmax = softmax
        self.softmax_lod = softmax_lod
        self.labels = labels
        self.labels_lod = labels_lod
        self.blank = blank
        self.norm_by_times = norm_by_times

        self.level = 0
41 42
        self.num_classes = num_classes
        self.batch_size = batch_size
Y
Yiqun Liu 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

        self.loss = np.zeros([self.batch_size, 1], dtype="float32")
        self.gradient = np.zeros(self.softmax.shape, dtype="float32")

        # float64
        self.EXP_MAX = sys.float_info.max
        self.EXP_MIN = sys.float_info.min
        self.LOG_ZERO = np.log(self.EXP_MIN)
        self.LOG_INFINITY = np.log(self.EXP_MAX)

    def safe_exp(self, x):
        if x <= self.LOG_ZERO:
            return 0.0
        if x >= self.LOG_INFINITY:
            return self.EXP_MAX
        return np.exp(x)

    def safe_log(self, x):
        if x <= self.EXP_MIN:
            return self.LOG_ZERO
        return np.log(x)

    # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb
    def log_div(self, x, y):
        res = x - y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb
    def log_mul(self, x, y):
        res = x + y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale,
    # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a
    def log_add(self, x, y):
        if x < y:
            t = y
            y = x
            x = t
        return x + self.safe_log(1 + self.safe_exp(y - x))

    def segment_range(self, time, total_times, total_segments):
        start = max(0, total_segments - (2 * (total_times - time)))
        end = min(total_segments, 2 * (time + 1))
        return start, end

    def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence):
        total_times = softmax_a_sequence.shape[0]
        total_segments = labels_a_sequence.shape[0] * 2 + 1

        required_times = labels_a_sequence.shape[0]
        old_label = -1
        for i in range(labels_a_sequence.shape[0]):
            # two contingous labels with the same value
            if labels_a_sequence[i, 0] == old_label:
                required_times = required_times + 1
            old_label = labels_a_sequence[i, 0]

        if total_times < required_times:
            return 0

        # calculate the forward and backward variables,
        # reference Chapter 7.3 of "Alex Grave, Supervised Sequence
        # Labelling with Recurrent Neural Networks"
        log_acts = np.zeros([total_times, self.num_classes], dtype="float32")
        for i in range(total_times):
            for j in range(self.num_classes):
                log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j])

        # calculate the forward variables
        forward_vars = np.zeros([total_times, total_segments], dtype="float32")
        for i in range(total_times):
            for j in range(total_segments):
                forward_vars[i, j] = self.LOG_ZERO

        for i in range(total_times):
            # dp initialization at t0
            if i == 0:
                forward_vars[i, 0] = log_acts[0, self.blank]
                if total_segments > 1:
                    forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]]
                continue

            # dp from t1
            start, end = self.segment_range(i, total_times, total_segments)
            for k in range(end - start):
                j = k + start
                if j & 1 == 1:
M
minqiyang 已提交
139
                    label_idx = j // 2
Y
Yiqun Liu 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
                    label_val = labels_a_sequence[label_idx, 0]
                    fv = self.log_add(forward_vars[i - 1, j],
                                      forward_vars[i - 1, j - 1])
                    if j > 1 and label_val != labels_a_sequence[label_idx - 1,
                                                                0]:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 2])
                    fv = self.log_mul(fv, log_acts[i, label_val])
                else:
                    fv = forward_vars[i - 1, j]
                    if j > 0:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 1])
                    fv = self.log_mul(fv, log_acts[i, self.blank])
                forward_vars[i, j] = fv

        # sum the last two value as log_prob
        log_prob = forward_vars[total_times - 1, total_segments - 1]
        if total_segments > 1:
            log_prob = self.log_add(
                log_prob, forward_vars[total_times - 1, total_segments - 2])

        return -log_prob

    def forward(self):
163 164
        softmax_offset = 0
        labels_offset = 0
Y
Yiqun Liu 已提交
165
        for i in range(self.batch_size):
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
            if self.labels.shape[1] == 1:
                softmax_start_i = softmax_offset
                softmax_end_i = softmax_offset + self.softmax_lod[self.level][i]
                labels_start_i = labels_offset
                labels_end_i = labels_offset + self.labels_lod[self.level][i]

                softmax_a_sequence = self.softmax[softmax_start_i:
                                                  softmax_end_i, :]
                labels_a_sequence = self.labels[labels_start_i:labels_end_i, :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)
                softmax_offset += self.softmax_lod[self.level][i]
                labels_offset += self.labels_lod[self.level][i]
            else:
                softmax_a_sequence = self.softmax[:self.softmax_lod[i], i, :]
                labels_a_sequence = self.labels[:self.labels_lod[i], :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)

Y
Yiqun Liu 已提交
185 186 187 188
        return self.loss


class TestWarpCTCOp(OpTest):
189 190
    def config(self):
        self.batch_size = 4
191
        self.num_classes = 12
192 193
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
194 195 196
        self.blank = self.num_classes - 1
        self.norm_by_times = False

Y
Yiqun Liu 已提交
197 198
    def setUp(self):
        self.op_type = "warpctc"
199
        self.config()
Y
Yiqun Liu 已提交
200

201 202
        logits = np.random.uniform(
            0.1, 1.0,
203
            [sum(self.logits_lod[0]), self.num_classes]).astype("float32")
Y
Yiqun Liu 已提交
204 205
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
206
        labels = np.random.randint(
207 208 209
            0,
            self.num_classes - 1, [sum(self.labels_lod[0]), 1],
            dtype="int32")
Y
Yiqun Liu 已提交
210

211
        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
212 213
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
Y
Yiqun Liu 已提交
214 215 216
        loss = ctc.forward()

        max_sequence_length = 0
217
        for i in range(self.batch_size):
218 219
            max_sequence_length = max(max_sequence_length,
                                      self.logits_lod[0][i])
220
        self.gradient = np.zeros(
221 222
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype="float32")
Y
Yiqun Liu 已提交
223 224

        self.inputs = {
225 226
            "Logits": (logits, self.logits_lod),
            "Label": (labels, self.labels_lod)
Y
Yiqun Liu 已提交
227 228
        }
        self.outputs = {"Loss": loss}
W
Wu Yi 已提交
229 230 231 232
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }
Y
Yiqun Liu 已提交
233 234

    def test_check_output(self):
235
        self.check_output()
Y
Yiqun Liu 已提交
236

W
wanghaoshuang 已提交
237
    def test_check_grad(self):
238
        self.outputs['WarpCTCGrad'] = self.gradient
H
hong 已提交
239 240
        self.check_grad(
            ["Logits"], "Loss", max_relative_error=0.007, check_dygraph=False)
Y
Yiqun Liu 已提交
241

242

243 244 245 246
class TestWarpCTCOpCase1(TestWarpCTCOp):
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
247 248
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
249
        self.blank = self.num_classes - 1
250
        self.norm_by_times = False
W
Wu Yi 已提交
251 252


253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
class TestWarpCTCOpWithPadding(OpTest):
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
        self.config()

        logits = np.random.uniform(
            0.1, 1.0,
            [sum(self.logits_length), self.num_classes]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
            self.num_classes - 1, [sum(self.labels_length), 1],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
279 280
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
            max_sequence_length = max(max_sequence_length,
                                      self.logits_length[i])
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype="float32")

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
            max_target_seq_length = max(max_target_seq_length,
                                        self.labels_length[i])
        new_labels = np.zeros(
            [self.batch_size, max_target_seq_length], dtype="int32")

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype="float32")

        self.inputs = {
            "Logits": new_logits,
W
whs 已提交
319
            "Label": new_labels,
320 321 322 323 324 325 326 327 328 329
            "LogitsLength": self.logits_length,
            "LabelLength": self.labels_length
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
330
        self.check_output()
331 332 333

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
H
hong 已提交
334 335
        self.check_grad(
            ["Logits"], "Loss", max_relative_error=0.007, check_dygraph=False)
336 337 338 339 340 341 342 343 344 345


class TestWarpCTCOpWithPaddingCase1(TestWarpCTCOpWithPadding):
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
346
        self.blank = self.num_classes - 1
347
        self.norm_by_times = False
348

Y
Yiqun Liu 已提交
349

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
class TestWarpCTCOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            logits = fluid.data(
                name='logits', shape=[5, 16, 6], dtype='float32')
            logits_length = fluid.data(
                name='logits_length', shape=[None], dtype='int64')
            label = fluid.data(name='label', shape=[16, 3], dtype='int32')
            label_length = fluid.data(
                name='labels_length', shape=[None], dtype='int64')

            def test_logits_Variable():
                logits_data = np.random.rand(5, 16, 6).astype("float32")
                fluid.layers.warpctc(
                    input=logits_data,
                    label=label,
                    input_length=logits_length,
                    label_length=label_length)

            self.assertRaises(TypeError, test_logits_Variable)

            def test_label_Variable():
                label_data = np.random.randint(0, 5, [5, 1]).astype("int32")
                fluid.layers.warpctc(
                    input=logits,
                    label=label_data,
                    input_length=logits_length,
                    label_length=label_length)

            self.assertRaises(TypeError, test_label_Variable)

            def test_logits_len_Variable():
                logits_length_data = np.array([5] * 16).astype("int64")
                fluid.layers.warpctc(
                    input=logits,
                    label=label,
                    input_length=logits_length_data,
                    label_length=label_length)

            self.assertRaises(TypeError, test_logits_len_Variable)

            def test_label_len_Variable():
                label_length_data = np.array([3] * 16).astype("int64")
                fluid.layers.warpctc(
                    input=logits,
                    label=label,
                    input_length=logits_length,
                    label_length=label_length_data)

            self.assertRaises(TypeError, test_label_len_Variable)


402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
class TestCTCLossAPICase(unittest.TestCase):
    def test_functinal_api(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

        logits = np.random.uniform(0.1, 1.0, [
            max(self.logits_length), self.batch_size, self.num_classes
        ]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
            self.num_classes - 1, [self.batch_size, max(self.labels_length)],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
        softmax = paddle.to_variable(logits)
        labels = paddle.to_variable(labels)
        logits_length = paddle.to_variable(self.logits_length)
        labels_length = paddle.to_variable(self.labels_length)
        loss_pd_mean = F.ctc_loss(
            softmax,
            labels,
            logits_length,
            labels_length,
            blank=self.blank,
            reduction='mean')
        loss_pd_mean = loss_pd_mean.numpy()

        loss_pd_sum = F.ctc_loss(
            softmax,
            labels,
            logits_length,
            labels_length,
            blank=self.blank,
            reduction='sum')
        loss_pd_sum = loss_pd_sum.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)
        loss_np_mean = (loss_np / labels_length.numpy()).mean()
        loss_np_sum = loss_np.sum()

        self.assertTrue(np.allclose(loss_pd_mean, loss_np_mean, atol=1))
        self.assertTrue(np.allclose(loss_pd_sum, loss_np_sum, atol=1))

    def test_class_api(self):
        self.batch_size = 3
        self.num_classes = 15
        self.logits_length = np.array([3, 3, 3], dtype=np.int64)
        self.labels_length = np.array([0, 1, 2], dtype=np.int64)
        self.blank = 0
        self.norm_by_times = False

        logits = np.random.uniform(0.1, 1.0, [
            max(self.logits_length), self.batch_size, self.num_classes
        ]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            1,
            self.num_classes, [self.batch_size, max(self.labels_length)],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
        softmax = paddle.to_variable(logits)
        labels = paddle.to_variable(labels)
        logits_length = paddle.to_variable(self.logits_length)
        labels_length = paddle.to_variable(self.labels_length)

        loss_pd = paddle.nn.CTCLoss(self.blank, 'none')(
            softmax, labels, logits_length, labels_length)
        loss_pd = loss_pd.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)

        self.assertTrue(np.allclose(loss_pd, loss_np, atol=1))


Y
Yiqun Liu 已提交
494 495
if __name__ == "__main__":
    unittest.main()