test_warpctc_op.py 22.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yiqun Liu 已提交
17 18 19
import sys
import unittest
import numpy as np
20 21
from op_test import OpTest
from test_softmax_op import stable_softmax
22
import paddle.fluid as fluid
23
import paddle.fluid.core as core
24
from paddle.fluid import Program, program_guard
25 26
import paddle
import paddle.nn.functional as F
Y
Yiqun Liu 已提交
27

L
Li Fuchen 已提交
28 29
paddle.enable_static()

30
CUDA_BLOCK_SIZE = 32
31

Y
Yiqun Liu 已提交
32 33

class CTCForward(object):
34 35
    def __init__(self, softmax, softmax_lod, labels, labels_lod, num_classes,
                 batch_size, blank, norm_by_times):
Y
Yiqun Liu 已提交
36 37 38 39 40 41 42 43
        self.softmax = softmax
        self.softmax_lod = softmax_lod
        self.labels = labels
        self.labels_lod = labels_lod
        self.blank = blank
        self.norm_by_times = norm_by_times

        self.level = 0
44 45
        self.num_classes = num_classes
        self.batch_size = batch_size
Y
Yiqun Liu 已提交
46

47 48
        self.loss = np.zeros([self.batch_size, 1], dtype=softmax.dtype)
        self.gradient = np.zeros(self.softmax.shape, dtype=softmax.dtype)
Y
Yiqun Liu 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

        # float64
        self.EXP_MAX = sys.float_info.max
        self.EXP_MIN = sys.float_info.min
        self.LOG_ZERO = np.log(self.EXP_MIN)
        self.LOG_INFINITY = np.log(self.EXP_MAX)

    def safe_exp(self, x):
        if x <= self.LOG_ZERO:
            return 0.0
        if x >= self.LOG_INFINITY:
            return self.EXP_MAX
        return np.exp(x)

    def safe_log(self, x):
        if x <= self.EXP_MIN:
            return self.LOG_ZERO
        return np.log(x)

    # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb
    def log_div(self, x, y):
        res = x - y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb
    def log_mul(self, x, y):
        res = x + y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale,
    # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a
    def log_add(self, x, y):
        if x < y:
            t = y
            y = x
            x = t
        return x + self.safe_log(1 + self.safe_exp(y - x))

    def segment_range(self, time, total_times, total_segments):
        start = max(0, total_segments - (2 * (total_times - time)))
        end = min(total_segments, 2 * (time + 1))
        return start, end

    def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence):
        total_times = softmax_a_sequence.shape[0]
        total_segments = labels_a_sequence.shape[0] * 2 + 1

        required_times = labels_a_sequence.shape[0]
        old_label = -1
        for i in range(labels_a_sequence.shape[0]):
            # two contingous labels with the same value
            if labels_a_sequence[i, 0] == old_label:
                required_times = required_times + 1
            old_label = labels_a_sequence[i, 0]

        if total_times < required_times:
            return 0

        # calculate the forward and backward variables,
        # reference Chapter 7.3 of "Alex Grave, Supervised Sequence
        # Labelling with Recurrent Neural Networks"
118 119
        log_acts = np.zeros(
            [total_times, self.num_classes], dtype=softmax_a_sequence.dtype)
Y
Yiqun Liu 已提交
120 121 122 123 124
        for i in range(total_times):
            for j in range(self.num_classes):
                log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j])

        # calculate the forward variables
125 126
        forward_vars = np.zeros(
            [total_times, total_segments], dtype=softmax_a_sequence.dtype)
Y
Yiqun Liu 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        for i in range(total_times):
            for j in range(total_segments):
                forward_vars[i, j] = self.LOG_ZERO

        for i in range(total_times):
            # dp initialization at t0
            if i == 0:
                forward_vars[i, 0] = log_acts[0, self.blank]
                if total_segments > 1:
                    forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]]
                continue

            # dp from t1
            start, end = self.segment_range(i, total_times, total_segments)
            for k in range(end - start):
                j = k + start
                if j & 1 == 1:
M
minqiyang 已提交
144
                    label_idx = j // 2
Y
Yiqun Liu 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
                    label_val = labels_a_sequence[label_idx, 0]
                    fv = self.log_add(forward_vars[i - 1, j],
                                      forward_vars[i - 1, j - 1])
                    if j > 1 and label_val != labels_a_sequence[label_idx - 1,
                                                                0]:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 2])
                    fv = self.log_mul(fv, log_acts[i, label_val])
                else:
                    fv = forward_vars[i - 1, j]
                    if j > 0:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 1])
                    fv = self.log_mul(fv, log_acts[i, self.blank])
                forward_vars[i, j] = fv

        # sum the last two value as log_prob
        log_prob = forward_vars[total_times - 1, total_segments - 1]
        if total_segments > 1:
            log_prob = self.log_add(
                log_prob, forward_vars[total_times - 1, total_segments - 2])

        return -log_prob

    def forward(self):
168 169
        softmax_offset = 0
        labels_offset = 0
Y
Yiqun Liu 已提交
170
        for i in range(self.batch_size):
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
            if self.labels.shape[1] == 1:
                softmax_start_i = softmax_offset
                softmax_end_i = softmax_offset + self.softmax_lod[self.level][i]
                labels_start_i = labels_offset
                labels_end_i = labels_offset + self.labels_lod[self.level][i]

                softmax_a_sequence = self.softmax[softmax_start_i:
                                                  softmax_end_i, :]
                labels_a_sequence = self.labels[labels_start_i:labels_end_i, :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)
                softmax_offset += self.softmax_lod[self.level][i]
                labels_offset += self.labels_lod[self.level][i]
            else:
                softmax_a_sequence = self.softmax[:self.softmax_lod[i], i, :]
                labels_a_sequence = self.labels[:self.labels_lod[i], :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)

Y
Yiqun Liu 已提交
190 191 192 193
        return self.loss


class TestWarpCTCOp(OpTest):
194 195
    def config(self):
        self.batch_size = 4
196
        self.num_classes = 12
197 198
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
199 200 201
        self.blank = self.num_classes - 1
        self.norm_by_times = False

Y
Yiqun Liu 已提交
202 203
    def setUp(self):
        self.op_type = "warpctc"
204
        self.config()
Y
Yiqun Liu 已提交
205

206 207
        logits = np.random.uniform(
            0.1, 1.0,
208
            [sum(self.logits_lod[0]), self.num_classes]).astype("float32")
Y
Yiqun Liu 已提交
209 210
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
211
        labels = np.random.randint(
212 213 214
            0,
            self.num_classes - 1, [sum(self.labels_lod[0]), 1],
            dtype="int32")
Y
Yiqun Liu 已提交
215

216
        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
217 218
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
Y
Yiqun Liu 已提交
219 220 221
        loss = ctc.forward()

        max_sequence_length = 0
222
        for i in range(self.batch_size):
223 224
            max_sequence_length = max(max_sequence_length,
                                      self.logits_lod[0][i])
225
        self.gradient = np.zeros(
226
            [max_sequence_length, self.batch_size, self.num_classes],
227
            dtype=logits.dtype)
Y
Yiqun Liu 已提交
228 229

        self.inputs = {
230 231
            "Logits": (logits, self.logits_lod),
            "Label": (labels, self.labels_lod)
Y
Yiqun Liu 已提交
232 233
        }
        self.outputs = {"Loss": loss}
W
Wu Yi 已提交
234 235 236 237
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }
Y
Yiqun Liu 已提交
238 239

    def test_check_output(self):
240
        self.check_output()
Y
Yiqun Liu 已提交
241

W
wanghaoshuang 已提交
242
    def test_check_grad(self):
243
        self.outputs['WarpCTCGrad'] = self.gradient
244 245 246 247 248 249 250 251 252 253 254 255
        if core.is_compiled_with_rocm():
            self.check_grad(
                ["Logits"],
                "Loss",
                max_relative_error=0.009,
                check_dygraph=False)
        else:
            self.check_grad(
                ["Logits"],
                "Loss",
                max_relative_error=0.007,
                check_dygraph=False)
Y
Yiqun Liu 已提交
256

257

258 259 260 261
class TestWarpCTCOpCase1(TestWarpCTCOp):
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
262 263
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
264
        self.blank = self.num_classes - 1
265
        self.norm_by_times = False
W
Wu Yi 已提交
266 267


268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
class TestWarpCTCOpWithPadding(OpTest):
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
        self.config()

        logits = np.random.uniform(
            0.1, 1.0,
            [sum(self.logits_length), self.num_classes]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
            self.num_classes - 1, [sum(self.labels_length), 1],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
294 295
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
296 297 298 299 300 301 302 303 304
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
            max_sequence_length = max(max_sequence_length,
                                      self.logits_length[i])
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
305
            dtype=logits.dtype)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
            max_target_seq_length = max(max_target_seq_length,
                                        self.labels_length[i])
        new_labels = np.zeros(
            [self.batch_size, max_target_seq_length], dtype="int32")

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
330
            dtype=logits.dtype)
331 332 333

        self.inputs = {
            "Logits": new_logits,
W
whs 已提交
334
            "Label": new_labels,
335 336 337 338 339 340 341 342 343 344
            "LogitsLength": self.logits_length,
            "LabelLength": self.labels_length
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
345
        self.check_output()
346 347 348

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
349 350 351 352 353 354 355 356 357 358 359 360
        if core.is_compiled_with_rocm():
            self.check_grad(
                ["Logits"],
                "Loss",
                max_relative_error=0.009,
                check_dygraph=False)
        else:
            self.check_grad(
                ["Logits"],
                "Loss",
                max_relative_error=0.007,
                check_dygraph=False)
361 362 363 364 365 366 367 368 369 370


class TestWarpCTCOpWithPaddingCase1(TestWarpCTCOpWithPadding):
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
371
        self.blank = self.num_classes - 1
372
        self.norm_by_times = False
373

Y
Yiqun Liu 已提交
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
class TestWarpCTCOpFp64(OpTest):
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 5, 5]]
        self.labels_lod = [[3, 1, 4, 2]]
        self.logits_length = np.array([4, 1, 5, 5], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 2], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
        self.config()

        logits = np.random.uniform(
            0.1, 1.0,
            [sum(self.logits_length), self.num_classes]).astype("float64")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
            self.num_classes - 1, [sum(self.labels_length), 1],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
            max_sequence_length = max(max_sequence_length,
                                      self.logits_length[i])
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype=logits.dtype)

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
            max_target_seq_length = max(max_target_seq_length,
                                        self.labels_length[i])
        new_labels = np.zeros(
            [self.batch_size, max_target_seq_length], dtype="int32")

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype=logits.dtype)

        self.inputs = {
            "Logits": new_logits,
            "Label": new_labels,
            "LogitsLength": self.logits_length,
            "LabelLength": self.labels_length
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
        self.check_grad(["Logits"], "Loss")


459 460 461 462 463 464 465 466 467 468 469 470
class TestWarpCTCOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            logits = fluid.data(
                name='logits', shape=[5, 16, 6], dtype='float32')
            logits_length = fluid.data(
                name='logits_length', shape=[None], dtype='int64')
            label = fluid.data(name='label', shape=[16, 3], dtype='int32')
            label_length = fluid.data(
                name='labels_length', shape=[None], dtype='int64')

            def test_logits_Variable():
471
                logits_data = np.random.rand(5, 16, 6).astype(logits.dtype)
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
                fluid.layers.warpctc(
                    input=logits_data,
                    label=label,
                    input_length=logits_length,
                    label_length=label_length)

            self.assertRaises(TypeError, test_logits_Variable)

            def test_label_Variable():
                label_data = np.random.randint(0, 5, [5, 1]).astype("int32")
                fluid.layers.warpctc(
                    input=logits,
                    label=label_data,
                    input_length=logits_length,
                    label_length=label_length)

            self.assertRaises(TypeError, test_label_Variable)

            def test_logits_len_Variable():
                logits_length_data = np.array([5] * 16).astype("int64")
                fluid.layers.warpctc(
                    input=logits,
                    label=label,
                    input_length=logits_length_data,
                    label_length=label_length)

            self.assertRaises(TypeError, test_logits_len_Variable)

            def test_label_len_Variable():
                label_length_data = np.array([3] * 16).astype("int64")
                fluid.layers.warpctc(
                    input=logits,
                    label=label,
                    input_length=logits_length,
                    label_length=label_length_data)

            self.assertRaises(TypeError, test_label_len_Variable)

510 511 512 513 514 515
    def test_dygraph_errors(self):
        def test_dygraph_with_lod():

            logits = np.random.uniform(0.1, 1.0, [20, 15]).astype("float32")
            # labels should not be blank
            labels = np.random.randint(0, 15 - 1, [15, 1], dtype="int32")
L
Li Fuchen 已提交
516 517
            softmax = paddle.to_tensor(logits)
            labels = paddle.to_tensor(labels)
518 519 520 521 522 523 524

            fluid.layers.warpctc(input=softmax, label=labels)

        paddle.disable_static()
        self.assertRaises(ValueError, test_dygraph_with_lod)
        paddle.enable_static()

525

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
class TestCTCLossAPICase(unittest.TestCase):
    def test_functinal_api(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

        logits = np.random.uniform(0.1, 1.0, [
            max(self.logits_length), self.batch_size, self.num_classes
        ]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
            self.num_classes - 1, [self.batch_size, max(self.labels_length)],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
551 552 553 554
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        loss_pd_mean = F.ctc_loss(
            softmax,
            labels,
            logits_length,
            labels_length,
            blank=self.blank,
            reduction='mean')
        loss_pd_mean = loss_pd_mean.numpy()

        loss_pd_sum = F.ctc_loss(
            softmax,
            labels,
            logits_length,
            labels_length,
            blank=self.blank,
            reduction='sum')
        loss_pd_sum = loss_pd_sum.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)
        loss_np_mean = (loss_np / labels_length.numpy()).mean()
        loss_np_sum = loss_np.sum()

        self.assertTrue(np.allclose(loss_pd_mean, loss_np_mean, atol=1))
        self.assertTrue(np.allclose(loss_pd_sum, loss_np_sum, atol=1))

    def test_class_api(self):
        self.batch_size = 3
        self.num_classes = 15
        self.logits_length = np.array([3, 3, 3], dtype=np.int64)
        self.labels_length = np.array([0, 1, 2], dtype=np.int64)
        self.blank = 0
        self.norm_by_times = False

        logits = np.random.uniform(0.1, 1.0, [
            max(self.logits_length), self.batch_size, self.num_classes
        ]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            1,
            self.num_classes, [self.batch_size, max(self.labels_length)],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
604 605 606 607
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
608 609 610 611 612 613 614 615 616 617

        loss_pd = paddle.nn.CTCLoss(self.blank, 'none')(
            softmax, labels, logits_length, labels_length)
        loss_pd = loss_pd.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)

        self.assertTrue(np.allclose(loss_pd, loss_np, atol=1))


Y
Yiqun Liu 已提交
618 619
if __name__ == "__main__":
    unittest.main()