test_warpctc_op.py 22.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yiqun Liu 已提交
17 18 19
import sys
import unittest
import numpy as np
20 21
from op_test import OpTest
from test_softmax_op import stable_softmax
22
import paddle.fluid as fluid
23
import paddle.fluid.core as core
24
from paddle.fluid import Program, program_guard
25 26
import paddle
import paddle.nn.functional as F
Y
Yiqun Liu 已提交
27

L
Li Fuchen 已提交
28 29
paddle.enable_static()

30
CUDA_BLOCK_SIZE = 32
31

Y
Yiqun Liu 已提交
32 33

class CTCForward(object):
34

35 36
    def __init__(self, softmax, softmax_lod, labels, labels_lod, num_classes,
                 batch_size, blank, norm_by_times):
Y
Yiqun Liu 已提交
37 38 39 40 41 42 43 44
        self.softmax = softmax
        self.softmax_lod = softmax_lod
        self.labels = labels
        self.labels_lod = labels_lod
        self.blank = blank
        self.norm_by_times = norm_by_times

        self.level = 0
45 46
        self.num_classes = num_classes
        self.batch_size = batch_size
Y
Yiqun Liu 已提交
47

48 49
        self.loss = np.zeros([self.batch_size, 1], dtype=softmax.dtype)
        self.gradient = np.zeros(self.softmax.shape, dtype=softmax.dtype)
Y
Yiqun Liu 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

        # float64
        self.EXP_MAX = sys.float_info.max
        self.EXP_MIN = sys.float_info.min
        self.LOG_ZERO = np.log(self.EXP_MIN)
        self.LOG_INFINITY = np.log(self.EXP_MAX)

    def safe_exp(self, x):
        if x <= self.LOG_ZERO:
            return 0.0
        if x >= self.LOG_INFINITY:
            return self.EXP_MAX
        return np.exp(x)

    def safe_log(self, x):
        if x <= self.EXP_MIN:
            return self.LOG_ZERO
        return np.log(x)

    # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb
    def log_div(self, x, y):
        res = x - y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb
    def log_mul(self, x, y):
        res = x + y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale,
    # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a
    def log_add(self, x, y):
        if x < y:
            t = y
            y = x
            x = t
        return x + self.safe_log(1 + self.safe_exp(y - x))

    def segment_range(self, time, total_times, total_segments):
        start = max(0, total_segments - (2 * (total_times - time)))
        end = min(total_segments, 2 * (time + 1))
        return start, end

    def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence):
        total_times = softmax_a_sequence.shape[0]
        total_segments = labels_a_sequence.shape[0] * 2 + 1

        required_times = labels_a_sequence.shape[0]
        old_label = -1
        for i in range(labels_a_sequence.shape[0]):
            # two contingous labels with the same value
            if labels_a_sequence[i, 0] == old_label:
                required_times = required_times + 1
            old_label = labels_a_sequence[i, 0]

        if total_times < required_times:
            return 0

        # calculate the forward and backward variables,
        # reference Chapter 7.3 of "Alex Grave, Supervised Sequence
        # Labelling with Recurrent Neural Networks"
119 120
        log_acts = np.zeros([total_times, self.num_classes],
                            dtype=softmax_a_sequence.dtype)
Y
Yiqun Liu 已提交
121 122 123 124 125
        for i in range(total_times):
            for j in range(self.num_classes):
                log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j])

        # calculate the forward variables
126 127
        forward_vars = np.zeros([total_times, total_segments],
                                dtype=softmax_a_sequence.dtype)
Y
Yiqun Liu 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        for i in range(total_times):
            for j in range(total_segments):
                forward_vars[i, j] = self.LOG_ZERO

        for i in range(total_times):
            # dp initialization at t0
            if i == 0:
                forward_vars[i, 0] = log_acts[0, self.blank]
                if total_segments > 1:
                    forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]]
                continue

            # dp from t1
            start, end = self.segment_range(i, total_times, total_segments)
            for k in range(end - start):
                j = k + start
                if j & 1 == 1:
M
minqiyang 已提交
145
                    label_idx = j // 2
Y
Yiqun Liu 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
                    label_val = labels_a_sequence[label_idx, 0]
                    fv = self.log_add(forward_vars[i - 1, j],
                                      forward_vars[i - 1, j - 1])
                    if j > 1 and label_val != labels_a_sequence[label_idx - 1,
                                                                0]:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 2])
                    fv = self.log_mul(fv, log_acts[i, label_val])
                else:
                    fv = forward_vars[i - 1, j]
                    if j > 0:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 1])
                    fv = self.log_mul(fv, log_acts[i, self.blank])
                forward_vars[i, j] = fv

        # sum the last two value as log_prob
        log_prob = forward_vars[total_times - 1, total_segments - 1]
        if total_segments > 1:
            log_prob = self.log_add(
                log_prob, forward_vars[total_times - 1, total_segments - 2])

        return -log_prob

    def forward(self):
169 170
        softmax_offset = 0
        labels_offset = 0
Y
Yiqun Liu 已提交
171
        for i in range(self.batch_size):
172 173 174 175 176 177
            if self.labels.shape[1] == 1:
                softmax_start_i = softmax_offset
                softmax_end_i = softmax_offset + self.softmax_lod[self.level][i]
                labels_start_i = labels_offset
                labels_end_i = labels_offset + self.labels_lod[self.level][i]

178 179
                softmax_a_sequence = self.softmax[
                    softmax_start_i:softmax_end_i, :]
180 181 182 183 184 185 186 187 188 189 190
                labels_a_sequence = self.labels[labels_start_i:labels_end_i, :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)
                softmax_offset += self.softmax_lod[self.level][i]
                labels_offset += self.labels_lod[self.level][i]
            else:
                softmax_a_sequence = self.softmax[:self.softmax_lod[i], i, :]
                labels_a_sequence = self.labels[:self.labels_lod[i], :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)

Y
Yiqun Liu 已提交
191 192 193 194
        return self.loss


class TestWarpCTCOp(OpTest):
195

196 197
    def config(self):
        self.batch_size = 4
198
        self.num_classes = 12
199 200
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
201 202 203
        self.blank = self.num_classes - 1
        self.norm_by_times = False

Y
Yiqun Liu 已提交
204 205
    def setUp(self):
        self.op_type = "warpctc"
206
        self.config()
Y
Yiqun Liu 已提交
207

208 209
        logits = np.random.uniform(
            0.1, 1.0,
210
            [sum(self.logits_lod[0]), self.num_classes]).astype("float32")
Y
Yiqun Liu 已提交
211 212
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
213 214 215 216
        labels = np.random.randint(0,
                                   self.num_classes - 1,
                                   [sum(self.labels_lod[0]), 1],
                                   dtype="int32")
Y
Yiqun Liu 已提交
217

218
        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
219 220
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
Y
Yiqun Liu 已提交
221 222 223
        loss = ctc.forward()

        max_sequence_length = 0
224
        for i in range(self.batch_size):
225 226
            max_sequence_length = max(max_sequence_length,
                                      self.logits_lod[0][i])
227
        self.gradient = np.zeros(
228
            [max_sequence_length, self.batch_size, self.num_classes],
229
            dtype=logits.dtype)
Y
Yiqun Liu 已提交
230 231

        self.inputs = {
232 233
            "Logits": (logits, self.logits_lod),
            "Label": (labels, self.labels_lod)
Y
Yiqun Liu 已提交
234 235
        }
        self.outputs = {"Loss": loss}
W
Wu Yi 已提交
236 237 238 239
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }
Y
Yiqun Liu 已提交
240 241

    def test_check_output(self):
242
        self.check_output()
Y
Yiqun Liu 已提交
243

W
wanghaoshuang 已提交
244
    def test_check_grad(self):
245
        self.outputs['WarpCTCGrad'] = self.gradient
246
        if core.is_compiled_with_rocm():
247 248 249 250
            self.check_grad(["Logits"],
                            "Loss",
                            max_relative_error=0.009,
                            check_dygraph=False)
251
        else:
252 253 254 255
            self.check_grad(["Logits"],
                            "Loss",
                            max_relative_error=0.007,
                            check_dygraph=False)
Y
Yiqun Liu 已提交
256

257

258
class TestWarpCTCOpCase1(TestWarpCTCOp):
259

260 261 262
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
263 264
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
265
        self.blank = self.num_classes - 1
266
        self.norm_by_times = False
W
Wu Yi 已提交
267 268


269
class TestWarpCTCOpWithPadding(OpTest):
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
        self.config()

        logits = np.random.uniform(
            0.1, 1.0,
            [sum(self.logits_length), self.num_classes]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
290 291 292 293
        labels = np.random.randint(0,
                                   self.num_classes - 1,
                                   [sum(self.labels_length), 1],
                                   dtype="int32")
294 295

        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
296 297
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
298 299 300 301 302 303 304 305 306
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
            max_sequence_length = max(max_sequence_length,
                                      self.logits_length[i])
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
307
            dtype=logits.dtype)
308 309 310 311 312 313 314 315 316 317 318 319 320

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
            max_target_seq_length = max(max_target_seq_length,
                                        self.labels_length[i])
321 322
        new_labels = np.zeros([self.batch_size, max_target_seq_length],
                              dtype="int32")
323 324 325 326 327 328 329 330 331

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
332
            dtype=logits.dtype)
333 334 335

        self.inputs = {
            "Logits": new_logits,
W
whs 已提交
336
            "Label": new_labels,
337 338 339 340 341 342 343 344 345 346
            "LogitsLength": self.logits_length,
            "LabelLength": self.labels_length
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
347
        self.check_output()
348 349 350

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
351
        if core.is_compiled_with_rocm():
352 353 354 355
            self.check_grad(["Logits"],
                            "Loss",
                            max_relative_error=0.009,
                            check_dygraph=False)
356
        else:
357 358 359 360
            self.check_grad(["Logits"],
                            "Loss",
                            max_relative_error=0.007,
                            check_dygraph=False)
361 362 363


class TestWarpCTCOpWithPaddingCase1(TestWarpCTCOpWithPadding):
364

365 366 367 368 369 370 371
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
372
        self.blank = self.num_classes - 1
373
        self.norm_by_times = False
374

Y
Yiqun Liu 已提交
375

376
class TestWarpCTCOpFp64(OpTest):
377

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 5, 5]]
        self.labels_lod = [[3, 1, 4, 2]]
        self.logits_length = np.array([4, 1, 5, 5], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 2], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
        self.config()

        logits = np.random.uniform(
            0.1, 1.0,
            [sum(self.logits_length), self.num_classes]).astype("float64")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
397 398 399 400
        labels = np.random.randint(0,
                                   self.num_classes - 1,
                                   [sum(self.labels_length), 1],
                                   dtype="int32")
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
            max_sequence_length = max(max_sequence_length,
                                      self.logits_length[i])
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype=logits.dtype)

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
            max_target_seq_length = max(max_target_seq_length,
                                        self.labels_length[i])
428 429
        new_labels = np.zeros([self.batch_size, max_target_seq_length],
                              dtype="int32")
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype=logits.dtype)

        self.inputs = {
            "Logits": new_logits,
            "Label": new_labels,
            "LogitsLength": self.logits_length,
            "LabelLength": self.labels_length
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
        self.check_grad(["Logits"], "Loss")


461
class TestWarpCTCOpError(unittest.TestCase):
462

463 464
    def test_errors(self):
        with program_guard(Program(), Program()):
465 466 467 468 469 470
            logits = fluid.data(name='logits',
                                shape=[5, 16, 6],
                                dtype='float32')
            logits_length = fluid.data(name='logits_length',
                                       shape=[None],
                                       dtype='int64')
471
            label = fluid.data(name='label', shape=[16, 3], dtype='int32')
472 473 474
            label_length = fluid.data(name='labels_length',
                                      shape=[None],
                                      dtype='int64')
475 476

            def test_logits_Variable():
477
                logits_data = np.random.rand(5, 16, 6).astype(logits.dtype)
478 479 480 481
                fluid.layers.warpctc(input=logits_data,
                                     label=label,
                                     input_length=logits_length,
                                     label_length=label_length)
482 483 484 485 486

            self.assertRaises(TypeError, test_logits_Variable)

            def test_label_Variable():
                label_data = np.random.randint(0, 5, [5, 1]).astype("int32")
487 488 489 490
                fluid.layers.warpctc(input=logits,
                                     label=label_data,
                                     input_length=logits_length,
                                     label_length=label_length)
491 492 493 494 495

            self.assertRaises(TypeError, test_label_Variable)

            def test_logits_len_Variable():
                logits_length_data = np.array([5] * 16).astype("int64")
496 497 498 499
                fluid.layers.warpctc(input=logits,
                                     label=label,
                                     input_length=logits_length_data,
                                     label_length=label_length)
500 501 502 503 504

            self.assertRaises(TypeError, test_logits_len_Variable)

            def test_label_len_Variable():
                label_length_data = np.array([3] * 16).astype("int64")
505 506 507 508
                fluid.layers.warpctc(input=logits,
                                     label=label,
                                     input_length=logits_length,
                                     label_length=label_length_data)
509 510 511

            self.assertRaises(TypeError, test_label_len_Variable)

512
    def test_dygraph_errors(self):
513

514 515 516 517 518
        def test_dygraph_with_lod():

            logits = np.random.uniform(0.1, 1.0, [20, 15]).astype("float32")
            # labels should not be blank
            labels = np.random.randint(0, 15 - 1, [15, 1], dtype="int32")
L
Li Fuchen 已提交
519 520
            softmax = paddle.to_tensor(logits)
            labels = paddle.to_tensor(labels)
521 522 523 524 525 526 527

            fluid.layers.warpctc(input=softmax, label=labels)

        paddle.disable_static()
        self.assertRaises(ValueError, test_dygraph_with_lod)
        paddle.enable_static()

528

529
class TestCTCLossAPICase(unittest.TestCase):
530

531 532 533 534 535 536 537 538
    def test_functinal_api(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

539 540 541 542
        logits = np.random.uniform(
            0.1, 1.0,
            [max(self.logits_length), self.batch_size, self.num_classes
             ]).astype("float32")
543 544 545 546
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
547 548
            self.num_classes - 1,
            [self.batch_size, max(self.labels_length)],
549 550 551 552 553 554 555 556
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
557 558 559 560
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
561 562 563 564 565 566
        loss_pd_mean = F.ctc_loss(softmax,
                                  labels,
                                  logits_length,
                                  labels_length,
                                  blank=self.blank,
                                  reduction='mean')
567 568
        loss_pd_mean = loss_pd_mean.numpy()

569 570 571 572 573 574
        loss_pd_sum = F.ctc_loss(softmax,
                                 labels,
                                 logits_length,
                                 labels_length,
                                 blank=self.blank,
                                 reduction='sum')
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
        loss_pd_sum = loss_pd_sum.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)
        loss_np_mean = (loss_np / labels_length.numpy()).mean()
        loss_np_sum = loss_np.sum()

        self.assertTrue(np.allclose(loss_pd_mean, loss_np_mean, atol=1))
        self.assertTrue(np.allclose(loss_pd_sum, loss_np_sum, atol=1))

    def test_class_api(self):
        self.batch_size = 3
        self.num_classes = 15
        self.logits_length = np.array([3, 3, 3], dtype=np.int64)
        self.labels_length = np.array([0, 1, 2], dtype=np.int64)
        self.blank = 0
        self.norm_by_times = False

592 593 594 595
        logits = np.random.uniform(
            0.1, 1.0,
            [max(self.logits_length), self.batch_size, self.num_classes
             ]).astype("float32")
596 597 598 599
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            1,
600 601
            self.num_classes,
            [self.batch_size, max(self.labels_length)],
602 603 604 605 606 607 608 609
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
610 611 612 613
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
614

615 616 617
        loss_pd = paddle.nn.CTCLoss(self.blank,
                                    'none')(softmax, labels, logits_length,
                                            labels_length)
618 619 620 621 622 623 624
        loss_pd = loss_pd.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)

        self.assertTrue(np.allclose(loss_pd, loss_np, atol=1))


Y
Yiqun Liu 已提交
625 626
if __name__ == "__main__":
    unittest.main()