batch_norm_op.cc 22.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
16

Q
qingqing01 已提交
17
#include <memory>
S
Siddharth Goyal 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20

Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_layout.h"
22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
25

H
hong 已提交
26 27 28
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/multiary.h"

Q
Qiao Longfei 已提交
29 30 31
namespace paddle {
namespace operators {

Q
qingqing01 已提交
32
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
33 34 35 36 37 38 39
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BatchNorm");

Q
qingqing01 已提交
40
  bool is_test = ctx->Attrs().Get<bool>("is_test");
41 42 43
  bool trainable_stats = ctx->Attrs().Get<bool>("trainable_statistics");
  bool test_mode = is_test && (!trainable_stats);
  if (!test_mode) {
44
    OP_INOUT_CHECK(ctx->HasOutput("MeanOut"), "Output", "MeanOut", "BatchNorm");
45 46 47 48 49 50 51
    OP_INOUT_CHECK(
        ctx->HasOutput("VarianceOut"), "Output", "VarianceOut", "BatchNorm");
    OP_INOUT_CHECK(
        ctx->HasOutput("SavedMean"), "Output", "SavedMean", "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"),
                   "Output",
                   "SavedVariance",
52
                   "BatchNorm");
Q
Qiao Longfei 已提交
53
  }
K
Kexin Zhao 已提交
54

Q
qingqing01 已提交
55
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
56 57
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0],
                    ctx->Outputs("MeanOut")[0],
58 59 60
                    platform::errors::InvalidArgument(
                        "Mean and MeanOut should share the same memory"));
  PADDLE_ENFORCE_EQ(
61 62
      ctx->Inputs("Variance")[0],
      ctx->Outputs("VarianceOut")[0],
63 64
      platform::errors::InvalidArgument(
          "Variance and VarianceOut should share the same memory"));
Q
qingqing01 已提交
65 66

  const auto x_dims = ctx->GetInputDim("X");
67 68 69

  for (int i = 0; i < x_dims.size(); i++) {
    PADDLE_ENFORCE_EQ(
70 71
        (x_dims[i] == -1) || (x_dims[i] > 0),
        true,
72 73
        platform::errors::InvalidArgument(
            "Each dimension of input tensor is expected to be -1 or a "
74
            "positive number, but received %d. Input's shape is [%s].",
75 76
            x_dims[i],
            x_dims));
77 78
  }

Q
qingqing01 已提交
79 80 81
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

82 83
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
84 85
    PADDLE_ENFORCE_EQ(mom.size(),
                      1,
86
                      platform::errors::InvalidArgument(
C
ceci3 已提交
87 88 89
                          "The input tensor MomentumTensor's size must be 1"
                          "But received: MomentumTensor's size is [%d]",
                          mom.size()));
90 91
  }

92
  PADDLE_ENFORCE_GE(
93 94
      x_dims.size(),
      2,
K
Kaipeng Deng 已提交
95 96 97 98
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
99 100
          x_dims,
          x_dims.size()));
101
  PADDLE_ENFORCE_LE(
102 103
      x_dims.size(),
      5,
K
Kaipeng Deng 已提交
104 105 106 107
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
108 109
          x_dims,
          x_dims.size()));
110 111
  VLOG(4) << ctx->IsRunMKLDNNKernel();
  VLOG(4) << data_layout;
Q
qingqing01 已提交
112
  const int64_t C =
113
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
114 115
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
116

117 118
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
119

120
  PADDLE_ENFORCE_EQ(
121 122
      scale_dim.size(),
      1UL,
123 124 125 126
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
127 128 129 130
          scale_dim,
          scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(),
                    1UL,
131 132 133 134
                    platform::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
135 136
                        bias_dim,
                        bias_dim.size()));
C
ceci3 已提交
137

138
  bool check = true;
139
  if ((!ctx->IsRuntime()) &&
140
      (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
141 142 143 144
    check = false;
  }

  if (check) {
145 146
    PADDLE_ENFORCE_EQ(scale_dim[0],
                      C,
147 148 149
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
150 151 152 153
                          C,
                          scale_dim[0]));
    PADDLE_ENFORCE_EQ(bias_dim[0],
                      C,
154 155 156
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
157 158
                          C,
                          bias_dim[0]));
159
  }
Q
qingqing01 已提交
160
  ctx->SetOutputDim("Y", x_dims);
161
  VLOG(4) << x_dims;
Q
qingqing01 已提交
162 163 164 165 166 167 168 169 170
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
171
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
172 173 174 175 176 177 178
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
K
Kaipeng Deng 已提交
179
  PADDLE_ENFORCE_EQ(
180
      bn_param_type,
181 182
      framework::TransToProtoVarType(
          ctx.Input<phi::DenseTensor>("Scale")->dtype()),
K
Kaipeng Deng 已提交
183 184
      platform::errors::InvalidArgument("Scale input should be of float type"));
  PADDLE_ENFORCE_EQ(
185
      bn_param_type,
186 187
      framework::TransToProtoVarType(
          ctx.Input<phi::DenseTensor>("Bias")->dtype()),
K
Kaipeng Deng 已提交
188 189
      platform::errors::InvalidArgument("Bias input should be of float type"));
  PADDLE_ENFORCE_EQ(
190
      bn_param_type,
191 192
      framework::TransToProtoVarType(
          ctx.Input<phi::DenseTensor>("Mean")->dtype()),
K
Kaipeng Deng 已提交
193
      platform::errors::InvalidArgument("Mean input should be of float type"));
194 195 196 197 198
  PADDLE_ENFORCE_EQ(bn_param_type,
                    framework::TransToProtoVarType(
                        ctx.Input<phi::DenseTensor>("Variance")->dtype()),
                    platform::errors::InvalidArgument(
                        "Variance input should be of float type"));
Q
qingqing01 已提交
199 200

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
201
#ifdef PADDLE_WITH_MKLDNN
202 203 204 205 206
  if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    return framework::OpKernelType(input_data_type,
                                   ctx.GetPlace(),
                                   framework::DataLayout::kMKLDNN,
                                   framework::LibraryType::kMKLDNN);
K
Kexin Zhao 已提交
207
  }
Q
qingqing01 已提交
208
#endif
Q
Qiao Longfei 已提交
209

210
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
Q
qingqing01 已提交
211 212
}

213
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
214 215
    const std::string &var_name,
    const Tensor &tensor,
216 217 218 219 220 221 222 223 224 225 226 227 228 229
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
230 231
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
232 233 234
    }
  }
#endif
235 236
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
237 238
}

Q
qingqing01 已提交
239 240 241 242 243 244 245 246 247
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
K
Kaipeng Deng 已提交
248
        PADDLE_ENFORCE_GE(
249 250
            epsilon,
            0.0f,
K
Kaipeng Deng 已提交
251 252
            platform::errors::InvalidArgument(
                "'epsilon' should be greater or equal than 0.0."));
253 254
        PADDLE_ENFORCE_LE(epsilon,
                          0.001f,
K
Kaipeng Deng 已提交
255 256
                          platform::errors::InvalidArgument(
                              "'epsilon' should be less or equal than 0.001."));
Q
qingqing01 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
272 273 274 275 276
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
292 293 294
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
C
ceci3 已提交
295 296
      .AsDispensable()
      .AsExtra();
Q
qingqing01 已提交
297 298 299 300 301 302 303 304
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
305 306 307 308 309
  AddAttr<bool>("trainable_statistics",
                "(bool, default false) Whether to calculate mean and variance "
                "in test mode. If setting true in test mode, mean and variace "
                "will be calculated by current batch statistics.")
      .SetDefault(false);
Q
qingqing01 已提交
310
  AddComment(R"DOC(
311
Batch Normalization.
Q
Qiao Longfei 已提交
312

313 314 315 316 317 318
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
319 320

)DOC");
Q
qingqing01 已提交
321
}
C
chengduo 已提交
322

Q
qingqing01 已提交
323 324
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
325
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNormGrad");
326 327 328
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                 "Input",
                 framework::GradVarName("Y"),
329
                 "BatchNormGrad");
330 331 332 333 334
  OP_INOUT_CHECK(
      ctx->HasInput("SavedMean"), "Input", "SavedMean", "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"),
                 "Input",
                 "SavedVariance",
335
                 "BatchNormGrad");
Q
qingqing01 已提交
336 337

  // check output
338 339
  const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
  const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));
340
  const bool has_x_grad = ctx->HasOutput(framework::GradVarName("X"));
341

342 343
  PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad),
                    true,
344
                    platform::errors::NotFound(
345 346 347
                        "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
                        "or not be null at same time. But now, "
                        "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
348 349
                        has_scale_grad,
                        has_bias_grad));
350

Q
qingqing01 已提交
351 352
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
K
Kaipeng Deng 已提交
353
    PADDLE_ENFORCE_EQ(
354 355
        !ctx->Attrs().Get<bool>("use_mkldnn"),
        true,
K
Kaipeng Deng 已提交
356 357 358
        platform::errors::InvalidArgument(
            "Using global stats during training is not supported "
            "in gradient op kernel of batch_norm_mkldnn_op now."));
Q
qingqing01 已提交
359
  }
Q
Qiao Longfei 已提交
360

361 362 363 364
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormGrad");
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
365

366
  const int C =
367
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
368 369 370 371 372 373 374
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

  // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
  if (has_scale_grad) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
375
  }
376 377 378
  if (has_x_grad) {
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }
Q
qingqing01 已提交
379
}
Q
Qiao Longfei 已提交
380

Q
qingqing01 已提交
381 382 383 384
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
K
Kaipeng Deng 已提交
385 386
    PADDLE_THROW(
        platform::errors::InvalidArgument("can't find gradient variable of Y"));
Q
qingqing01 已提交
387 388 389 390 391 392 393 394
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
K
Kaipeng Deng 已提交
395 396
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
Q
qingqing01 已提交
397
  }
398

Q
qingqing01 已提交
399
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
400
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
401

402
#ifdef PADDLE_WITH_MKLDNN
403 404 405 406 407
  if (this->CanMKLDNNBeUsed(ctx, data_type)) {
    return framework::OpKernelType(data_type,
                                   ctx.GetPlace(),
                                   framework::DataLayout::kMKLDNN,
                                   framework::LibraryType::kMKLDNN);
Q
qingqing01 已提交
408
  }
409
#endif
410

411
  return framework::OpKernelType(data_type, ctx.GetPlace());
Q
qingqing01 已提交
412
}
Q
Qiao Longfei 已提交
413

414
framework::OpKernelType BatchNormGradOp::GetKernelTypeForVar(
415 416
    const std::string &var_name,
    const Tensor &tensor,
417 418 419 420 421 422 423 424 425 426 427 428 429 430
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "X") || (var_name == framework::GradVarName("Y"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
431 432
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
433 434 435
    }
  }
#endif
436 437
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
438 439
}

H
hong 已提交
440
template <typename T>
441
void BatchNormGradMaker<T>::Apply(GradOpPtr<T> op) const {
442 443 444 445 446 447 448 449
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
450 451 452
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
453 454

  // used when setting use_global_stats True during training
R
Ruibiao Chen 已提交
455 456
  if (PADDLE_GET_CONST(bool, this->GetAttr("use_global_stats")) ||
      PADDLE_GET_CONST(bool, this->GetAttr("is_test"))) {
457 458 459
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
460

461
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
462

463 464 465 466
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
}
Y
Yu Yang 已提交
467

468 469 470 471 472 473 474
template <typename T>
void BatchNormDoubleGradMaker<T>::Apply(GradOpPtr<T> op) const {
  op->SetType("batch_norm_grad_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("SavedMean", this->Input("SavedMean"));
  op->SetInput("SavedVariance", this->Input("SavedVariance"));
R
Ruibiao Chen 已提交
475
  if (PADDLE_GET_CONST(bool, this->GetAttr("use_global_stats"))) {
476
    op->SetInput("Mean", this->Input("Mean"));
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    op->SetInput("Variance", this->Input("Variance"));
  }
  op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
  op->SetInput("DDScale", this->OutputGrad(framework::GradVarName("Scale")));
  op->SetInput("DDBias", this->OutputGrad(framework::GradVarName("Bias")));
  op->SetInput("DY", this->Input(framework::GradVarName("Y")));

  op->SetAttrMap(this->Attrs());
  op->SetOutput("DX", this->InputGrad("X"));
  op->SetOutput("DScale", this->InputGrad("Scale"));
  op->SetOutput("DDY", this->InputGrad(framework::GradVarName("Y")));
}

void BatchNormDoubleGradOp::InferShape(
    framework::InferShapeContext *ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormDoubleGrad");
493 494 495 496 497 498 499
  OP_INOUT_CHECK(
      ctx->HasInput("Scale"), "Input", "Scale", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(
      ctx->HasInput("SavedMean"), "Input", "SavedMean", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"),
                 "Input",
                 "SavedVariance",
500 501 502 503
                 "BatchNormDoubleGrad");

  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
504 505 506
    OP_INOUT_CHECK(ctx->HasInput("Variance"),
                   "Input",
                   "VarianceOut",
507 508 509 510 511 512 513 514 515
                   "BatchNormDoubleGrad");
  }

  OP_INOUT_CHECK(ctx->HasInput("DY"), "Input", "DY", "BatchNormDoubleGrad");

  // check output
  OP_INOUT_CHECK(ctx->HasOutput("DX"), "Output", "DX", "BatchNormDoubleGrad");

  const auto x_dims = ctx->GetInputDim("X");
516 517 518
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
  const int C =
519
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
520 521 522
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
  if (ctx->HasOutput("DX")) {
    ctx->SetOutputDim("DX", x_dims);
  }
  if (ctx->HasOutput("DScale")) {
    ctx->SetOutputDim("DScale", {C});
  }
  if (ctx->HasOutput("DDY")) {
    ctx->ShareDim("X", "DDY");
  }
}

framework::OpKernelType BatchNormDoubleGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar("DY");
  if (var == nullptr) {
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
  }
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}

DECLARE_INPLACE_OP_INFERER(BatchNormDoubleGradOpInplaceInferer, {"DY", "DDY"});

Q
Qiao Longfei 已提交
557 558 559 560
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
561

562 563
DECLARE_INFER_SHAPE_FUNCTOR(batch_norm,
                            BatchNormInferShapeFunctor,
H
hong 已提交
564 565
                            PD_INFER_META(phi::BatchNormInferMeta));

566 567 568
REGISTER_OPERATOR(batch_norm,
                  ops::BatchNormOp,
                  ops::BatchNormOpMaker,
H
hong 已提交
569 570 571
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
572 573
REGISTER_OPERATOR(batch_norm_grad,
                  ops::BatchNormGradOp,
574 575
                  ops::BatchNormDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormDoubleGradMaker<paddle::imperative::OpBase>);
576 577
REGISTER_OPERATOR(batch_norm_grad_grad,
                  ops::BatchNormDoubleGradOp,
578
                  ops::BatchNormDoubleGradOpInplaceInferer);