pybind.cc 47.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
52
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/ir.h"
54 55
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
56
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
58

59
#include "paddle/fluid/string/to_string.h"
60

D
Dong Zhihong 已提交
61
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
62
#ifndef _WIN32
Y
Yi Wang 已提交
63
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
64
#endif
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
67 68
#endif

M
minqiyang 已提交
69 70
#include "pybind11/stl.h"

71 72 73 74
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
75 76 77
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

78
namespace paddle {
79
namespace pybind {
80
bool IsCompiledWithCUDA() {
81
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
82 83 84 85 86 87
  return false;
#else
  return true;
#endif
}

88
bool IsCompiledWithBrpc() {
89
#ifndef PADDLE_WITH_DISTRIBUTE
90 91
  return false;
#endif
92 93 94 95 96 97

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
98 99
}

Y
update  
Yancey1989 已提交
100
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
101
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
102 103 104 105 106 107
  return true;
#else
  return false;
#endif
}

108
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
109 110 111
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
112
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
113
  m.doc() = "C++ core of PaddlePaddle";
114

115 116 117 118
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

119
  BindException(&m);
Y
Yu Yang 已提交
120

S
sneaxiy 已提交
121
  m.def(
S
sneaxiy 已提交
122
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
123 124 125 126
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
127 128 129
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
130
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
131 132
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
133
      .def("_run_backward",
X
Xin Pan 已提交
134
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
135
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
136
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
137
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
138
      .def("_grad_ivar",
M
minqiyang 已提交
139
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
140
           py::return_value_policy::reference)
M
minqiyang 已提交
141
      .def("_copy_to",
P
Paddle CI 已提交
142
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
143 144 145 146 147
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
148
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
149
      .def("_copy_to",
P
Paddle CI 已提交
150
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
151 152 153 154 155
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
156
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
157
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
158
           py::return_value_policy::reference)
159 160 161 162 163 164
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
165 166 167
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
168
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
169
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
170
            self.SetStopGradient(stop_gradient);
171
          });
172

173
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
174 175 176 177 178 179 180 181
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
182 183 184 185 186 187 188
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
189 190 191 192 193 194 195
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
196 197
          py::return_value_policy::reference);

X
Xin Pan 已提交
198
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
199
  layer.def(py::init<>())
X
Xin Pan 已提交
200 201 202
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
203
      });
X
Xin Pan 已提交
204

X
polish  
Xin Pan 已提交
205
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
206
      .def(py::init<>())
X
Xin Pan 已提交
207 208
      .def_static(
          "apply",
X
Xin Pan 已提交
209
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
210 211 212 213
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
214 215 216 217 218
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
219

220 221
  BindTracer(&m);

222 223 224
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
225
      .def("_get_dims",
226
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
227
      .def("_set_dims",
Q
qijun 已提交
228
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
229
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
230
           })
Y
yuyang18 已提交
231
      .def("_set_layout",
D
dzhwinter 已提交
232 233 234
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
235
      .def("_alloc_float",
D
dzhwinter 已提交
236
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
237
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
238
           })
Y
yuyang18 已提交
239
      .def("_alloc_float",
Y
Yu Yang 已提交
240
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
241
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
242
           })
Y
yuyang18 已提交
243
      .def("_alloc_int",
Y
Yu Yang 已提交
244
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
245
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
246
           })
Y
yuyang18 已提交
247
      .def("_alloc_int",
D
dzhwinter 已提交
248
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
249
             self.mutable_data<int>(place);
Q
qijun 已提交
250
           })
Y
yuyang18 已提交
251
      .def("_alloc_int",
C
chengduoZH 已提交
252 253 254
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
255
      .def("_alloc_float",
C
chengduoZH 已提交
256 257 258
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
259 260
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
261
      .def("set", PyCPUTensorSetFromArray<double>)
262
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
263
      .def("set", PyCPUTensorSetFromArray<bool>)
264
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
265
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
266
      .def("set", PyCPUTensorSetFromArray<int8_t>)
267
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
268 269
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
270
      .def("set", PyCUDATensorSetFromArray<double>)
271
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
272
      .def("set", PyCUDATensorSetFromArray<bool>)
273
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
274
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
275
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
276 277 278 279 280 281
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
282
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
283
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
284
#endif
285
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
286 287 288 289
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
290
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
291

X
Xin Pan 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
305
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
306
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
307
     columns, hence [5, 2].
X
Xin Pan 已提交
308 309 310

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
311 312
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
336 337
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
338 339 340 341 342 343 344 345 346 347 348 349 350 351
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
352
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
353 354 355 356 357
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
358
      .def("set_lod",
359
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
360
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
361
             LoD new_lod;
362 363
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
364 365
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
366
             self.set_lod(new_lod);
D
dangqingqing 已提交
367
           })
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
393
      // Set above comments of set_lod.
394 395 396 397 398 399 400 401 402 403 404 405 406
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
407 408
      });

Q
qijun 已提交
409 410 411 412 413 414 415 416 417 418 419
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
420 421
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
422 423
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
424 425 426 427 428 429 430 431 432
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
433
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
434
      .def("rows", [](SelectedRows &self) {
435 436 437 438 439
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
440
      });
Q
qijun 已提交
441

442
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
443 444 445

All parameter, weight, gradient are variables in Paddle.
)DOC")
446
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
447
      .def("set_int",
448 449
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
450 451 452 453 454 455 456
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
457
      .def("get_tensor",
458 459
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
460 461
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
462 463 464
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
465 466 467 468 469
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
470 471 472
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
473
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
474 475 476 477 478
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
479
#endif
Y
Refine  
Yu Yang 已提交
480 481 482 483 484
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
485
           py::return_value_policy::reference);
486

Y
Refine  
Yu Yang 已提交
487
  py::class_<framework::ReaderHolder>(m, "Reader", "")
488
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
489

S
sneaxiy 已提交
490 491 492 493
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
494 495
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
496
      .def("push",
S
sneaxiy 已提交
497
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
498
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
499
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
500
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
501
           })
S
sneaxiy 已提交
502 503 504 505
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
506

S
sneaxiy 已提交
507
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
508
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
509
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
510
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
511 512 513 514 515 516
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
517 518
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
519
              return holder->GetQueue();
S
sneaxiy 已提交
520
            },
S
sneaxiy 已提交
521
        py::return_value_policy::copy);
S
sneaxiy 已提交
522

S
sneaxiy 已提交
523
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
543 544
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
545
      .def("var",
546
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
547
             return self.Var(name);
Y
Yu Yang 已提交
548
           },
549
           py::return_value_policy::reference)
550
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
551
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
552
           py::return_value_policy::reference)
Y
Yu Yang 已提交
553
      .def("drop_kids", &Scope::DropKids);
554

S
sneaxiy 已提交
555 556 557 558 559 560 561 562
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
563 564
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
565 566
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
567 568 569 570 571 572 573 574 575 576
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
577 578
    return ret_values;
  });
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
595
  m.def("prune", [](const ProgramDesc &origin,
596
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
597
    ProgramDesc prog_with_targets(origin);
598
    for (const auto &t : targets) {
599
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
600
    }
601
    proto::ProgramDesc pruned_desc;
602
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
603
    return new ProgramDesc(pruned_desc);
604
  });
605 606 607 608
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
609 610 611
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
612 613
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
614
  // clang-format off
Y
Yu Yang 已提交
615
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
616 617
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
618
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
619 620 621
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
622
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
623
                      -> paddle::platform::DeviceContext* {
624
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
625
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
626
#else
Q
qijun 已提交
627
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
628
#endif
C
chengduoZH 已提交
629 630 631 632 633 634 635 636 637 638 639
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
640
// clang-format on
P
peizhilin 已提交
641
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
642 643
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
644
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
645
      .def(py::init<int>())
D
dzhwinter 已提交
646
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
647

648 649 650
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
651

C
chengduoZH 已提交
652 653 654 655
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
656 657 658 659 660 661 662
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
663
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
664
             self = gpu_place;
C
chengduoZH 已提交
665 666
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
667 668
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
669
      });
Y
Yu Yang 已提交
670

Y
Yu Yang 已提交
671 672 673
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
674
                    proto::OpDesc desc;
Y
Yu Yang 已提交
675 676 677 678 679
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
680
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
681
                  })
682
      .def("run",
683
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
684 685 686
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
687
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
688 689 690 691 692
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
693 694 695 696 697 698 699
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
700 701
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
702
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
703
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
704 705 706 707
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
708

F
fengjiayi 已提交
709
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
710
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
711
      .def("close", &Executor::Close)
S
sneaxiy 已提交
712 713 714 715 716
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
717

D
dzhwinter 已提交
718
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
719
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
720 721
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
722

723
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
724
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
725
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
726 727 728 729 730 731
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
732

733
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
734
  m.def("get_fetch_variable", framework::GetFetchVariable);
735
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
736

X
Xin Pan 已提交
737 738
  m.def("_is_program_version_supported", IsProgramVersionSupported);

739 740 741 742 743
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
744

Y
Yu Yang 已提交
745 746 747 748 749 750 751 752 753
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
754
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
755 756
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
773 774 775
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
776
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
777
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
778
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
779

P
peizhilin 已提交
780
#ifndef _WIN32
D
dangqingqing 已提交
781 782 783
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
784
#endif
P
peizhilin 已提交
785
#endif
Y
Yu Yang 已提交
786

787 788 789 790
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
791
      .value("kAll", platform::ProfilerState::kAll)
792 793 794 795 796 797 798 799 800 801 802 803 804
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
805
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
806
  m.def("reset_profiler", platform::ResetProfiler);
W
WangZhen 已提交
807 808 809 810 811
  m.def("get_pass", [](const py::bytes &binary_str) {
    std::string pass_type(binary_str);
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
812

813 814
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
815
      .def("has", &ir::Pass::Has)
816
      .def("set",
W
WangZhen 已提交
817 818 819 820
           [](ir::Pass &self, const std::string &attr_name,
              const ProgramDesc &attr) {
             return self.Set(attr_name, new ProgramDesc(attr));
           })
821
      .def(
822
          "set",
823 824 825
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
826 827
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
W
WangZhen 已提交
828
      .def("get_program", &ir::Pass::Get<ProgramDesc>)
F
flame 已提交
829 830 831 832
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
833
        optim_graph.release();
F
flame 已提交
834
      });
835

X
fix  
Xin Pan 已提交
836 837
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
838 839 840 841 842 843 844 845 846 847 848 849 850 851
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
852
  // -- python binds for parallel executor.
Y
yuyang18 已提交
853
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
854 855 856 857
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
858 859 860 861 862 863 864 865 866 867 868
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
869 870 871

        )DOC");

Y
yuyang18 已提交
872
  exec_strategy.def(py::init())
Y
yuyang18 已提交
873 874 875 876 877
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
878 879 880 881 882 883 884 885 886 887
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
888
      .def_property(
889 890 891 892
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
893 894 895 896
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
897 898 899 900 901
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
902 903 904 905
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
906 907 908 909 910 911 912
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
913 914 915 916 917 918 919 920 921 922 923
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
924 925 926 927 928 929
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
930

Y
yuyang18 已提交
931
  exec_strategy.def_property(
Y
yuyang18 已提交
932 933 934 935 936 937 938
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
939 940
      });

C
chengduo 已提交
941 942 943 944
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
945 946 947 948 949 950 951 952 953 954 955
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
956
)DOC");
Y
yuyang18 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
973
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
974
            self.reduce_ = strategy;
C
chengduo 已提交
975 976 977 978 979 980 981
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
982 983 984 985 986
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
987
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
988
            self.gradient_scale_ = strategy;
C
chengduo 已提交
989 990 991 992 993 994
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
995 996 997 998
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
999
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1000
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1001 1002 1003 1004
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1005 1006 1007 1008 1009 1010
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1011
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1021
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1022 1023
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1024
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1025 1026 1027 1028 1029 1030
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1043 1044 1045 1046 1047 1048
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1049
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1050 1051 1052 1053 1054
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1069 1070 1071 1072
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1073 1074 1075 1076
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1077 1078 1079 1080
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1081
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1082
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1083 1084 1085 1086 1087
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1088 1089 1090

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1091
                  const std::string &, Scope *, std::vector<Scope *> &,
1092
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1093 1094 1095 1096
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1097 1098 1099 1100 1101
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1102 1103 1104 1105
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1106 1107 1108 1109 1110 1111
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1112

1113
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1114
  BindAsyncExecutor(&m);
F
flame 已提交
1115 1116
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1117
  BindInferenceApi(&m);
L
Luo Tao 已提交
1118
}
1119
}  // namespace pybind
1120
}  // namespace paddle