loss.py 34.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define loss functions of neural network
16
import numpy as np
L
Leo Chen 已提交
17
import paddle.fluid as fluid
18
import paddle.fluid.core as core
19
import paddle
20
from .. import functional as F
21
from paddle.fluid.framework import core, in_dygraph_mode, _varbase_creator
22

L
Leo Chen 已提交
23
__all__ = [
24
    'CrossEntropyLoss',
25
    'MSELoss',
L
Leo Chen 已提交
26
    'L1Loss',
27
    'NLLLoss',
28
    'BCELoss',
29
    'KLDivLoss',
30
    'MarginRankingLoss',
31
    'CTCLoss',
32
    'SmoothL1Loss',
L
Leo Chen 已提交
33 34 35
]


36 37
class CrossEntropyLoss(fluid.dygraph.Layer):
    """
38 39
	:alias_main: paddle.nn.CrossEntropyLoss
	:alias: paddle.nn.CrossEntropyLoss,paddle.nn.layer.CrossEntropyLoss,paddle.nn.layer.loss.CrossEntropyLoss
S
swtkiwi 已提交
40

41 42
    This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``,
    and ``NLLLoss`` together.
43

44 45
    It is useful when training a classification problem with ``C`` classes.
    If provided, the optional argument ``weight`` should be a 1D Variable assigning
46 47 48
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
49

50 51 52 53 54
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

55 56
    If weight is not ``None``:

57 58 59 60 61 62
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
63 64
        input (Variable): Input tensor, the data type is float32, float64. Shape is
	    (N, C), where C is number of classes, and if shape is more than 2D, this
65 66
	    is (N, C, D1, D2,..., Dk), k >= 1.
        label (Variable): Label tensor, the data type is int64. Shape is (N), where each
67 68
	    value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
	    (N, D1, D2,..., Dk), k >= 1.
69
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
70 71
            to each class and the shape is (C). It has the same dimensions as class
	    number and the data type is float32, float64. Default is ``'None'``.
72 73 74 75 76 77
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
78 79
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient. Default is ``-100``.
80

81 82
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
83

84
    Return type: Variable.
85

86 87 88 89 90 91 92 93
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np

94 95 96
            input = fluid.data(name='input', shape=[5, 100], dtype='float64')
            label = fluid.data(name='label', shape=[5], dtype='int64')
            weight = fluid.data(name='weight', shape=[100], dtype='float64')
97
            ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
98
            output = ce_loss(input, label)
99 100 101
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
102 103 104
            input_data = np.random.random([5, 100]).astype("float64")
            label_data = np.random.randint(0, 100, size=(5)).astype(np.int64)
            weight_data = np.random.random([100]).astype("float64")
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

122
    def __init__(self, weight=None, ignore_index=-100, reduction='mean'):
123 124 125
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
126
        self.ignore_index = ignore_index
127 128 129

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
130 131 132
            input, 'input', ['float32', 'float64'], 'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'cross_entropy_loss')
133 134 135

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
136 137 138 139
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or"
                " 'none', but received %s, which is not allowed." %
                self.reduction)

140 141 142
        return paddle.nn.functional.cross_entropy(
            input,
            label,
143
            weight=self.weight,
144 145
            ignore_index=self.ignore_index,
            reduction=self.reduction)
146 147


148 149
class MSELoss(fluid.dygraph.layers.Layer):
    """
150 151
	:alias_main: paddle.nn.MSELoss
	:alias: paddle.nn.MSELoss,paddle.nn.layer.MSELoss,paddle.nn.layer.loss.MSELoss
S
swtkiwi 已提交
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

171
    where `input` and `label` are `float32` tensors of same shape.
172 173

    Parameters:
174 175
        input (Variable): Input tensor, the data type is float32,
        label (Variable): Label tensor, the data type is float32,
176 177
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
178 179 180
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
181 182 183 184 185 186 187
            Default is ``'mean'``.

    Returns:
        The tensor variable storing the MSE loss of input and label.

    Return type:
        Variable.
188 189 190

    Examples:
        .. code-block:: python
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

            import numpy as np
            import paddle
            from paddle import fluid
            import paddle.fluid.dygraph as dg

            mse_loss = paddle.nn.loss.MSELoss()
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            place = fluid.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            # declarative mode
            output = mse_loss(input,label)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output_data = exe.run(
                fluid.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # imperative mode
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = mse_loss(input, label)
                print(output.numpy())
                # [0.04000002]
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
            fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                       ['float32'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                                       ['float32'], 'MSELoss')

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
252 253 254
class L1Loss(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
255
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
256

257
     If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
258 259

    .. math::
260
        Out = \lvert input - label\rvert
261

262
    If `reduction` set to ``'mean'``, the loss is:
263

L
Leo Chen 已提交
264
    .. math::
265
        Out = MEAN(\lvert input - label\rvert)
266

267
    If `reduction` set to ``'sum'``, the loss is:
268

L
Leo Chen 已提交
269
    .. math::
270
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
271

272

L
Leo Chen 已提交
273
    Parameters:
274
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
275
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
276 277 278
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
279
            Default is ``'mean'``.
280 281 282
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
283 284
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
285
        output (Tensor): The L1 Loss of ``input`` and ``label``.
286 287
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
288

L
Leo Chen 已提交
289 290 291
    Examples:
        .. code-block:: python
            import paddle
292 293 294
            import numpy as np

            paddle.disable_static()
295
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
296
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
297
            input = paddle.to_variable(input_data)
298 299 300
            label = paddle.to_variable(label_data)

            l1_loss = paddle.nn.loss.L1Loss()
301
            output = l1_loss(input, label)
302
            print(output.numpy())
303 304 305
            # [0.35]

            l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
306
            output = l1_loss(input, label)
307
            print(output.numpy())
308 309 310
            # [1.4]

            l1_loss = paddle.nn.loss.L1Loss(reduction='none')
311
            output = l1_loss(input, label)
312
            print(output.numpy())
313 314
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]
L
Leo Chen 已提交
315 316
    """

317
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
318 319 320 321 322 323
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
324
        self.name = name
L
Leo Chen 已提交
325

326
    def forward(self, input, label):
327
        return paddle.nn.functional.l1_loss(
328
            input, label, self.reduction, name=self.name)
C
ceci3 已提交
329 330 331 332


class BCELoss(fluid.dygraph.Layer):
    """
C
ceci3 已提交
333
    This interface is used to construct a callable object of the ``BCELoss`` class.
334 335
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
336

C
ceci3 已提交
337
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
338 339

    .. math::
C
ceci3 已提交
340
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
341

C
ceci3 已提交
342
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
343 344

    .. math::
C
ceci3 已提交
345 346
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

347
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
348

C
ceci3 已提交
349
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
350

C
ceci3 已提交
351 352
    .. math::
        Out = MEAN(Out)
353

C
ceci3 已提交
354
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
355

C
ceci3 已提交
356 357
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
358

359
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
360 361
    should be numbers between 0 and 1.

C
ceci3 已提交
362
    Parameters:
363 364
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
365
            is float32, float64. Default is ``'None'``.
366
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
367
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
368
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
369
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
370
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
371
            Default is ``'mean'``.
372 373 374 375 376 377 378 379 380 381 382 383
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): 2-D tensor with shape: (N, *), N is batch_size, `*` means
            number of additional dimensions. The input ``input`` should always
            be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): 2-D tensor with the same shape as ``input``. The target
            labels which values should be numbers between 0 and 1. Available
            dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
384

385
    Returns:
C
ceci3 已提交
386 387
        A callable object of BCELoss.

C
ceci3 已提交
388 389
    Examples:
        .. code-block:: python
C
ceci3 已提交
390

C
ceci3 已提交
391 392 393 394
            import numpy as np
            import paddle
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
395 396 397 398 399 400 401 402 403

            paddle.disable_static()
            input = paddle.to_variable(input_data)
            label = paddle.to_variable(label_data)
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            print(output.numpy())  # [0.65537095]
            paddle.enable_static()

C
ceci3 已提交
404 405
    """

406
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
407 408 409 410 411 412 413 414
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
415
        self.name = name
C
ceci3 已提交
416 417

    def forward(self, input, label):
418 419 420
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name)
        return out
421 422 423 424


class NLLLoss(fluid.dygraph.Layer):
    """
425 426
	:alias_main: paddle.nn.NLLLoss
	:alias: paddle.nn.NLLLoss,paddle.nn.layer.NLLLoss,paddle.nn.layer.loss.NLLLoss
S
swtkiwi 已提交
427

428
    This class accepts input and target label and returns negative log likelihood
429
    cross error. It is useful to train a classification problem with C classes.
430

431
    The input for the loss is epected to contain log-probabilities of
432
    each classes. It has to be a Tensor of size either (batch_size, C) or
433 434 435 436
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
437

438 439 440
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
462 463
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
464
            it treated as if having all ones. the data type is
465
            float32, float64, Default is ``'None'``.
466 467
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
468
        reduction (str, optional): Indicate how to average the loss,
469
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
470 471 472
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
473
            Default is ``'mean'``.
474 475
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
476

477 478 479 480 481 482 483 484 485
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
486 487 488 489

    Examples:
        .. code-block:: python

490 491
                import paddle
                import numpy as np
492

493 494
                nll_loss = paddle.nn.layer.NLLLoss()
                log_softmax = paddle.nn.LogSoftmax(axis=1)
495

496 497 498 499 500 501
                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                 [0.53331435, 0.07999352, 0.8549948 ],
                                 [0.25879037, 0.39530203, 0.698465  ],
                                 [0.73427284, 0.63575995, 0.18827209],
                                 [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)
502

503 504 505 506 507 508 509
                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
510

511
    """
512

513 514 515 516 517 518
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
519
            raise ValueError(
520 521 522 523 524 525 526
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
527

528 529 530 531 532 533 534 535
    def forward(self, input, label):
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name)
536 537


538 539 540 541 542 543 544 545 546 547 548
class KLDivLoss(fluid.dygraph.Layer):
    """
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
549
        reduction (str, optional): Indicate how to average the loss,
550
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
551
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
552 553 554 555 556 557 558 559 560 561 562 563 564 565
            Default is ``'mean'``.

    Shape:
      - input: (N, *) where * means, any number of additional dimensions.
      - label: (N, *), same shape as input
      - output: tensor with shape: (1) by default.


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
566

567 568 569 570 571 572 573 574 575 576 577
            paddle.enable_imperative()

            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

            # 'batchmean' reduction, loss shape will be [N]
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5]
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        out = paddle.nn.functional.kl_div(input, label, self.reduction)
        return out


607 608 609 610
class MarginRankingLoss(fluid.dygraph.Layer):
    """

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
611
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
612 613
    , use the math function as follows.

614
    .. math::
615
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

634
    Shape:
635 636
        input: N-D Tensor, the shape is [N, *], N is batch size and `*` means any number of additional dimensions., available dtype is float32, float64.
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
637 638
        label: N-D Tensor, label have the same shape and dtype as `input`.
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
639 640 641 642 643 644 645 646

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

647 648 649
            import numpy as np
            import paddle

650
            paddle.disable_static()
651

652 653
            input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype("float32"))
            other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype("float32"))
654
            label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype("float32"))
655
            margin_rank_loss = paddle.nn.MarginRankingLoss()
656
            loss = margin_rank_loss(input, other, label)
657 658 659 660 661 662
            print(loss.numpy()) # [0.75]
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
663
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
664 665 666 667 668 669
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

670
    def forward(self, input, other, label):
671
        out = paddle.nn.functional.margin_ranking_loss(
672
            input, other, label, self.margin, self.reduction, self.name)
673
        return out
674 675


676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
class CTCLoss(fluid.dygraph.Layer):
    """
	:alias_main: paddle.nn.CTCLoss
	:alias: paddle.nn.CTCLoss, paddle.nn.layer.CTCLoss, paddle.nn.layer.loss.CTCLoss

    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc) 
    to compute Connectionist Temporal Classification (CTC) loss. 
    It can be aliased as softmax with CTC, since a native softmax activation 
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type must be float32.
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
    
    Examples:

        .. code-block:: python

            # declarative mode
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

            paddle.disable_static()
            log_probs = paddle.to_variable(log_probs)
            labels = paddle.to_variable(labels)
            input_lengths = paddle.to_variable(input_lengths)
            label_lengths = paddle.to_variable(label_lengths)

            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels, 
                input_lengths, 
                label_lengths)
            print(loss.numpy())  #[3.9179852 2.9076521]

            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels, 
                input_lengths, 
                label_lengths)
            print(loss.numpy())  #[1.1376063]
    """

    def __init__(self, blank=0, reduction='mean'):
        super(CTCLoss, self).__init__()
        self.blank = blank
        self.reduction = reduction

    def forward(self, log_probs, labels, input_lengths, label_lengths):
        return paddle.nn.functional.ctc_loss(log_probs, labels, input_lengths,
                                             label_lengths, self.blank,
                                             self.reduction)


764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
class SmoothL1Loss(fluid.dygraph.Layer):
    """
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

         loss(x,y)=\\frac{1}{n}\\sum_{i}z_i

    where z_i is given by:

    .. math::

         \\mathop{z_i}=\\left\\{\\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
        \\end{array} \\right.

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
791
        delta (float, optional): Specifies the hyperparameter delta to be used.
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.

    Returns:
        The tensor variable storing the smooth_l1_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
            print(output.numpy())
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
        super(SmoothL1Loss, self).__init__()
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name)