loss.py 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define loss functions of neural network
16
import numpy as np
L
Leo Chen 已提交
17
import paddle.fluid as fluid
18
import paddle.fluid.core as core
19
import paddle
20
from .. import functional as F
21
from paddle.fluid.framework import core, in_dygraph_mode, _varbase_creator
22

L
Leo Chen 已提交
23
__all__ = [
24
    #       'NCELoss',
25
    'CrossEntropyLoss',
26
    'MSELoss',
L
Leo Chen 已提交
27
    'L1Loss',
28
    'NLLLoss',
29
    'BCELoss',
30
    'KLDivLoss',
31 32
    'MarginRankingLoss',
    'SmoothL1Loss',
L
Leo Chen 已提交
33 34 35
]


36 37
class CrossEntropyLoss(fluid.dygraph.Layer):
    """
38 39
	:alias_main: paddle.nn.CrossEntropyLoss
	:alias: paddle.nn.CrossEntropyLoss,paddle.nn.layer.CrossEntropyLoss,paddle.nn.layer.loss.CrossEntropyLoss
S
swtkiwi 已提交
40

41 42
    This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``,
    and ``NLLLoss`` together.
43

44 45
    It is useful when training a classification problem with ``C`` classes.
    If provided, the optional argument ``weight`` should be a 1D Variable assigning
46 47 48
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
49

50 51 52 53 54
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

55 56
    If weight is not ``None``:

57 58 59 60 61 62
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
63 64
        input (Variable): Input tensor, the data type is float32, float64. Shape is
	    (N, C), where C is number of classes, and if shape is more than 2D, this
65 66
	    is (N, C, D1, D2,..., Dk), k >= 1.
        label (Variable): Label tensor, the data type is int64. Shape is (N), where each
67 68
	    value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
	    (N, D1, D2,..., Dk), k >= 1.
69
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
70 71
            to each class and the shape is (C). It has the same dimensions as class
	    number and the data type is float32, float64. Default is ``'None'``.
72 73 74 75 76 77
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
78 79
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient. Default is ``-100``.
80

81 82
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
83

84
    Return type: Variable.
85

86 87 88 89 90 91 92 93
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np

94 95 96
            input = fluid.data(name='input', shape=[5, 100], dtype='float64')
            label = fluid.data(name='label', shape=[5], dtype='int64')
            weight = fluid.data(name='weight', shape=[100], dtype='float64')
97
            ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
98
            output = ce_loss(input, label)
99 100 101
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
102 103 104
            input_data = np.random.random([5, 100]).astype("float64")
            label_data = np.random.randint(0, 100, size=(5)).astype(np.int64)
            weight_data = np.random.random([100]).astype("float64")
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

122
    def __init__(self, weight=None, reduction='mean', ignore_index=-100):
123 124 125
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
126
        self.ignore_index = ignore_index
127 128 129

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
130 131 132
            input, 'input', ['float32', 'float64'], 'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'cross_entropy_loss')
133 134 135

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
136 137 138 139 140 141 142 143 144 145 146 147 148 149
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or"
                " 'none', but received %s, which is not allowed." %
                self.reduction)

        log_softmax = paddle.nn.LogSoftmax()
        log_softmax_out = log_softmax(input)
        if self.weight is not None and not isinstance(self.weight,
                                                      fluid.framework.Variable):
            raise ValueError(
                "The weight' is not a Variable, please convert to Variable.")
        nll_loss = paddle.nn.loss.NLLLoss(
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)
150

151
        return nll_loss(log_softmax_out, label)
152 153


154 155
class MSELoss(fluid.dygraph.layers.Layer):
    """
156 157
	:alias_main: paddle.nn.MSELoss
	:alias: paddle.nn.MSELoss,paddle.nn.layer.MSELoss,paddle.nn.layer.loss.MSELoss
S
swtkiwi 已提交
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

177
    where `input` and `label` are `float32` tensors of same shape.
178 179

    Parameters:
180 181
        input (Variable): Input tensor, the data type is float32,
        label (Variable): Label tensor, the data type is float32,
182 183
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
184 185 186
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
187 188 189 190 191 192 193
            Default is ``'mean'``.

    Returns:
        The tensor variable storing the MSE loss of input and label.

    Return type:
        Variable.
194 195 196

    Examples:
        .. code-block:: python
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

            import numpy as np
            import paddle
            from paddle import fluid
            import paddle.fluid.dygraph as dg

            mse_loss = paddle.nn.loss.MSELoss()
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            place = fluid.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            # declarative mode
            output = mse_loss(input,label)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output_data = exe.run(
                fluid.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # imperative mode
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = mse_loss(input, label)
                print(output.numpy())
                # [0.04000002]
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
            fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                       ['float32'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                                       ['float32'], 'MSELoss')

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
258 259 260
class L1Loss(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
261
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
262

263
     If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
264 265

    .. math::
266
        Out = \lvert input - label\rvert
267

268
    If `reduction` set to ``'mean'``, the loss is:
269

L
Leo Chen 已提交
270
    .. math::
271
        Out = MEAN(\lvert input - label\rvert)
272

273
    If `reduction` set to ``'sum'``, the loss is:
274

L
Leo Chen 已提交
275
    .. math::
276
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
277

278

L
Leo Chen 已提交
279
    Parameters:
280
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
281
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
282 283 284
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
285
            Default is ``'mean'``.
286 287 288
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
289 290
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
291
        output (Tensor): The L1 Loss of ``input`` and ``label``.
292 293
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
294

L
Leo Chen 已提交
295 296 297
    Examples:
        .. code-block:: python
            import paddle
298 299 300
            import numpy as np

            paddle.disable_static()
301
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
302
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
303
            input = paddle.to_variable(input_data)
304 305 306
            label = paddle.to_variable(label_data)

            l1_loss = paddle.nn.loss.L1Loss()
307
            output = l1_loss(input, label)
308
            print(output.numpy())
309 310 311
            # [0.35]

            l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
312
            output = l1_loss(input, label)
313
            print(output.numpy())
314 315 316
            # [1.4]

            l1_loss = paddle.nn.loss.L1Loss(reduction='none')
317
            output = l1_loss(input, label)
318
            print(output.numpy())
319 320
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]
L
Leo Chen 已提交
321 322
    """

323
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
324 325 326 327 328 329
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
330
        self.name = name
L
Leo Chen 已提交
331

332
    def forward(self, input, label):
333
        return paddle.nn.functional.l1_loss(
334
            input, label, self.reduction, name=self.name)
C
ceci3 已提交
335 336 337 338


class BCELoss(fluid.dygraph.Layer):
    """
C
ceci3 已提交
339
    This interface is used to construct a callable object of the ``BCELoss`` class.
340 341
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
342

C
ceci3 已提交
343
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
344 345

    .. math::
C
ceci3 已提交
346
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
347

C
ceci3 已提交
348
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
349 350

    .. math::
C
ceci3 已提交
351 352
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

353
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
354

C
ceci3 已提交
355
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
356

C
ceci3 已提交
357 358
    .. math::
        Out = MEAN(Out)
359

C
ceci3 已提交
360
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
361

C
ceci3 已提交
362 363
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
364

365
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
366 367
    should be numbers between 0 and 1.

C
ceci3 已提交
368
    Parameters:
369 370
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
371
            is float32, float64. Default is ``'None'``.
372
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
373
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
374
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
375
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
376
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
377
            Default is ``'mean'``.
378 379 380 381 382 383 384 385 386 387 388 389
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): 2-D tensor with shape: (N, *), N is batch_size, `*` means
            number of additional dimensions. The input ``input`` should always
            be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): 2-D tensor with the same shape as ``input``. The target
            labels which values should be numbers between 0 and 1. Available
            dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
390

391
    Returns:
C
ceci3 已提交
392 393
        A callable object of BCELoss.

C
ceci3 已提交
394 395
    Examples:
        .. code-block:: python
C
ceci3 已提交
396

C
ceci3 已提交
397 398 399 400
            import numpy as np
            import paddle
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
401 402 403 404 405 406 407 408 409

            paddle.disable_static()
            input = paddle.to_variable(input_data)
            label = paddle.to_variable(label_data)
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            print(output.numpy())  # [0.65537095]
            paddle.enable_static()

C
ceci3 已提交
410 411
    """

412
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
413 414 415 416 417 418 419 420
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
421
        self.name = name
C
ceci3 已提交
422 423

    def forward(self, input, label):
424 425 426
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name)
        return out
427 428 429 430


class NLLLoss(fluid.dygraph.Layer):
    """
431 432
	:alias_main: paddle.nn.NLLLoss
	:alias: paddle.nn.NLLLoss,paddle.nn.layer.NLLLoss,paddle.nn.layer.loss.NLLLoss
S
swtkiwi 已提交
433

434
    This class accepts input and target label and returns negative log likelihood
435
    cross error. It is useful to train a classification problem with C classes.
436

437
    The input for the loss is epected to contain log-probabilities of
438
    each classes. It has to be a Tensor of size either (batch_size, C) or
439 440 441 442
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
443

444 445 446
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
468 469
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
470
            it treated as if having all ones. the data type is
471
            float32, float64, Default is ``'None'``.
472 473
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
474
        reduction (str, optional): Indicate how to average the loss,
475
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
476 477 478
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
479
            Default is ``'mean'``.
480 481
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
482

483 484 485 486 487 488 489 490 491
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
492 493 494 495

    Examples:
        .. code-block:: python

496 497
                import paddle
                import numpy as np
498

499 500
                nll_loss = paddle.nn.layer.NLLLoss()
                log_softmax = paddle.nn.LogSoftmax(axis=1)
501

502 503 504 505 506 507
                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                 [0.53331435, 0.07999352, 0.8549948 ],
                                 [0.25879037, 0.39530203, 0.698465  ],
                                 [0.73427284, 0.63575995, 0.18827209],
                                 [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)
508

509 510 511 512 513 514 515
                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
516

517
    """
518

519 520 521 522 523 524
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
525
            raise ValueError(
526 527 528 529 530 531 532
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
533

534 535 536 537 538 539 540 541
    def forward(self, input, label):
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name)
542 543


544 545 546 547 548 549 550 551 552 553 554
class KLDivLoss(fluid.dygraph.Layer):
    """
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
555
        reduction (str, optional): Indicate how to average the loss,
556
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
557
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
558 559 560 561 562 563 564 565 566 567 568 569 570 571
            Default is ``'mean'``.

    Shape:
      - input: (N, *) where * means, any number of additional dimensions.
      - label: (N, *), same shape as input
      - output: tensor with shape: (1) by default.


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
572

573 574 575 576 577 578 579 580 581 582 583
            paddle.enable_imperative()

            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

            # 'batchmean' reduction, loss shape will be [N]
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5]
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        out = paddle.nn.functional.kl_div(input, label, self.reduction)
        return out


613 614 615 616
class MarginRankingLoss(fluid.dygraph.Layer):
    """

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
617
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
618 619
    , use the math function as follows.

620
    .. math::
621
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

640
    Shape:
641 642
        input: N-D Tensor, the shape is [N, *], N is batch size and `*` means any number of additional dimensions., available dtype is float32, float64.
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
643 644
        label: N-D Tensor, label have the same shape and dtype as `input`.
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
645 646 647 648 649 650 651 652

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

653 654 655
            import numpy as np
            import paddle

656
            paddle.disable_static()
657

658 659
            input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype("float32"))
            other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype("float32"))
660
            label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype("float32"))
661
            margin_rank_loss = paddle.nn.MarginRankingLoss()
662
            loss = margin_rank_loss(input, other, label)
663 664 665 666 667 668
            print(loss.numpy()) # [0.75]
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
669
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
670 671 672 673 674 675
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

676
    def forward(self, input, other, label):
677
        out = paddle.nn.functional.margin_ranking_loss(
678
            input, other, label, self.margin, self.reduction, self.name)
679
        return out
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708


class SmoothL1Loss(fluid.dygraph.Layer):
    """
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

         loss(x,y)=\\frac{1}{n}\\sum_{i}z_i

    where z_i is given by:

    .. math::

         \\mathop{z_i}=\\left\\{\\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
        \\end{array} \\right.

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
709
        delta (float, optional): Specifies the hyperparameter delta to be used.
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.

    Returns:
        The tensor variable storing the smooth_l1_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
            print(output.numpy())
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
        super(SmoothL1Loss, self).__init__()
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name)