未验证 提交 f944b0f6 编写于 作者: L Leo Chen 提交者: GitHub

Dev/add l1 loss (#23322)

* add L1Loss

* support L1Loss, test=develop

* add test, test=develop

* fix batch, test=develop

* follow comments, test=develop
上级 93ea9dd2
......@@ -33,6 +33,7 @@ import paddle.compat
import paddle.distributed
batch = batch.batch
import paddle.sysconfig
import paddle.nn
#TODO: define alias in tensor and framework directory
# from .tensor.creation import create_.tensor #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
class TestL1Loss(unittest.TestCase):
def test_L1Loss_mean(self):
input_np = np.random.random(size=(10, 1)).astype(np.float32)
label_np = np.random.random(size=(10, 1)).astype(np.float32)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.layers.data(
name='input', shape=[10, 1], dtype='float32')
label = fluid.layers.data(
name='label', shape=[10, 1], dtype='float32')
l1_loss = paddle.nn.loss.L1Loss()
ret = l1_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[ret])
with fluid.dygraph.guard():
l1_loss = paddle.nn.loss.L1Loss()
dy_ret = l1_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_ret.numpy()
expected = np.mean(np.abs(input_np - label_np))
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
self.assertTrue(dy_result.shape, [1])
def test_L1Loss_sum(self):
input_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
label_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.layers.data(
name='input', shape=[10, 10, 5], dtype='float32')
label = fluid.layers.data(
name='label', shape=[10, 10, 5], dtype='float32')
l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
ret = l1_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[ret])
with fluid.dygraph.guard():
l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
dy_ret = l1_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_ret.numpy()
expected = np.sum(np.abs(input_np - label_np))
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
self.assertTrue(dy_result.shape, [1])
def test_L1Loss_none(self):
input_np = np.random.random(size=(10, 5)).astype(np.float32)
label_np = np.random.random(size=(10, 5)).astype(np.float32)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.layers.data(
name='input', shape=[10, 5], dtype='float32')
label = fluid.layers.data(
name='label', shape=[10, 5], dtype='float32')
l1_loss = paddle.nn.loss.L1Loss(reduction='none')
ret = l1_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[ret])
with fluid.dygraph.guard():
l1_loss = paddle.nn.loss.L1Loss(reduction='none')
dy_ret = l1_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_ret.numpy()
expected = np.abs(input_np - label_np)
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
self.assertTrue(dy_result.shape, input.shape)
if __name__ == "__main__":
unittest.main()
......@@ -14,7 +14,7 @@
# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
# __all__ = [ ]
__all__ = []
# TODO: define alias in nn directory
# from .clip import ErrorClipByValue #DEFINE_ALIAS
......@@ -56,7 +56,8 @@
# from .layer.loss import NCELoss #DEFINE_ALIAS
# from .layer.loss import CrossEntropyLoss #DEFINE_ALIAS
# from .layer.loss import MSELoss #DEFINE_ALIAS
# from .layer.loss import L1Loss #DEFINE_ALIAS
from .layer.loss import L1Loss #DEFINE_ALIAS
from .layer import loss #DEFINE_ALIAS
# from .layer.loss import NLLLoss #DEFINE_ALIAS
# from .layer.loss import BCELoss #DEFINE_ALIAS
# from .layer.learning_rate import CosineDecay #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define activation functions of neural network
from . import loss
__all__ = [loss]
......@@ -13,9 +13,99 @@
# limitations under the License.
# TODO: define loss functions of neural network
# __all__ = ['NCELoss',
# 'CrossEntropyLoss',
# 'MSELoss',
# 'L1Loss',
# 'NLLLoss',
# 'BCELoss']
import paddle.fluid as fluid
__all__ = [
#'NCELoss',
# 'CrossEntropyLoss',
# 'MSELoss',
'L1Loss',
# 'NLLLoss',
# 'BCELoss'
]
class L1Loss(fluid.dygraph.Layer):
"""
This interface is used to construct a callable object of the ``L1Loss`` class.
The L1Loss layer calculates the L1 Loss of input predictions and target
labels as follows.
If :attr:`reduction` set to ``'none'``, the unreduced loss is:
.. math::
Out = |input - label|
If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
.. math::
Out = MEAN(|input - label|)
If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
.. math::
Out = SUM(|input - label|)
The shape of input predictions and target labels are [N, *], where N is batch_size and `*`
means any number of additional dimensions.
If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as input.
If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
Parameters:
reduction (str, optional): Indicate the reduction to apply to the loss,
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
Default is ``'mean'``.
Returns:
A callable object of L1Loss.
Examples:
.. code-block:: python
# declarative mode
import paddle.fluid as fluid
import numpy as np
import paddle
input = fluid.data(name="input", shape=[1])
label = fluid.data(name="label", shape=[1])
l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
output = l1_loss(input,label)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data) # [array([0.2], dtype=float32)]
# imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
label = dg.to_variable(label_data)
l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
output = l1_loss(input,label)
print(output.numpy()) # [0.2]
"""
def __init__(self, reduction='mean'):
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
"The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
"received %s, which is not allowed." % reduction)
super(L1Loss, self).__init__()
self.reduction = reduction
def forward(self, input, label):
fluid.data_feeder.check_variable_and_dtype(
input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
fluid.data_feeder.check_variable_and_dtype(
label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
unreduced = fluid.layers.elementwise_sub(input, label, act='abs')
if self.reduction == 'sum':
return fluid.layers.reduce_sum(unreduced)
elif self.reduction == 'mean':
return fluid.layers.reduce_mean(unreduced)
else:
return unreduced
......@@ -105,6 +105,8 @@ write_version_py(filename='@PADDLE_BINARY_DIR@/python/paddle/version.py')
packages=['paddle',
'paddle.nn',
'paddle.nn.layer',
'paddle.libs',
'paddle.utils',
'paddle.dataset',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册