loss.py 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define loss functions of neural network  
L
Leo Chen 已提交
16
import paddle.fluid as fluid
17

L
Leo Chen 已提交
18
__all__ = [
19
    #       'NCELoss',
20
    'CrossEntropyLoss',
21
    'MSELoss',
L
Leo Chen 已提交
22
    'L1Loss',
23
    'NLLLoss',
C
ceci3 已提交
24
    'BCELoss'
L
Leo Chen 已提交
25 26 27
]


28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
class CrossEntropyLoss(fluid.dygraph.Layer):
    """
    This operator implements the cross entropy loss function. This OP combines `softmax`,
    `cross_entropy`, and `reduce_sum`/`reduce_mean` together.

    It is useful when training a classification problem with `C` classes.
    If provided, the optional argument `weight` should be a 1D Variable assigning
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

    If weight is not `None`:
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
        input (Variable): Input tensor, the data type is float32,
            float64, int32, int64.
        label (Variable): Label tensor, the data type is float32,
            float64, int32, int64.
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
            to each class. It has the same dimensions as class number and the data type
            is float32, float64, int32, int64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
    Return type: Variable.
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            input = fluid.layers.data(name='input', shape=[5, 100], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64')
            weight = fluid.layers.data(name='weight', shape=[100], dtype='float32')
            ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
            output = ce_loss(input,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            input_data = np.random.random([5, 100]).astype("float32")
            label_data = np.array([[1], [9], [40], [50], [90]]).astype("int64")
            weight_data = np.random.random([100]).astype("float32")
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

    def __init__(self, weight=None, reduction='mean'):
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'],
            'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'],
            'cross_entropy_loss')

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or 'none',"
                " but received %s, which is not allowed." % self.reduction)

        softmax_out = fluid.layers.softmax(input)
        if self.weight is not None:
            if isinstance(self.weight, fluid.framework.Variable):
                softmax_out = fluid.layers.elementwise_pow(
                    softmax_out, self.weight, axis=-1)
            else:
                raise ValueError(
                    "The weight' is not a Variable, please convert to Variable.")

        out = fluid.layers.cross_entropy(softmax_out, label)

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(out)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(out)
        else:
            return out


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
class MSELoss(fluid.dygraph.layers.Layer):
    """
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

159
    where `input` and `label` are `float32` tensors of same shape.
160 161

    Parameters:
162 163
        input (Variable): Input tensor, the data type is float32,
        label (Variable): Label tensor, the data type is float32,
164 165
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
166 167 168 169 170 171 172 173 174 175
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. 
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned. 
            Default is ``'mean'``.

    Returns:
        The tensor variable storing the MSE loss of input and label.

    Return type:
        Variable.
176 177 178

    Examples:
        .. code-block:: python
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

            import numpy as np
            import paddle
            from paddle import fluid
            import paddle.fluid.dygraph as dg

            mse_loss = paddle.nn.loss.MSELoss()
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            place = fluid.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            # declarative mode
            output = mse_loss(input,label)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output_data = exe.run(
                fluid.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # imperative mode
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = mse_loss(input, label)
                print(output.numpy())
                # [0.04000002]
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
            fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                       ['float32'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                                       ['float32'], 'MSELoss')

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
class L1Loss(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
    The L1Loss layer calculates the L1 Loss of input predictions and target 
    labels as follows.

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
    .. math::
        Out = |input - label|
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
    .. math::
        Out = MEAN(|input - label|)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
    .. math::
        Out = SUM(|input - label|)

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions.
    If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as input.
    If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
    
    Parameters:
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned; 
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. 
            Default is ``'mean'``.
    Returns:
        A callable object of L1Loss.
    Examples:
        .. code-block:: python
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
            output = l1_loss(input,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.2], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
                output = l1_loss(input,label)
                print(output.numpy())  # [0.2]
    """

    def __init__(self, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

        unreduced = fluid.layers.elementwise_sub(input, label, act='abs')

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(unreduced)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(unreduced)
        else:
            return unreduced
C
ceci3 已提交
325 326 327 328


class BCELoss(fluid.dygraph.Layer):
    """
C
ceci3 已提交
329 330 331 332
    This interface is used to construct a callable object of the ``BCELoss`` class.
    The BCELoss layer measures the binary_cross_entropy loss between input predictions 
    and target labels. The binary_cross_entropy loss can be described as:

C
ceci3 已提交
333
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
334 335

    .. math::
C
ceci3 已提交
336 337
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
338 339

    .. math::
C
ceci3 已提交
340 341 342
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
C
ceci3 已提交
343

C
ceci3 已提交
344 345 346
    .. math::
        Out = Out
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
347

C
ceci3 已提交
348 349 350
    .. math::
        Out = MEAN(Out)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
351

C
ceci3 已提交
352 353
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
354 355 356 357 358 359 360 361

    Note that the input predictions always be the output of sigmoid, and the target labels 
    should be numbers between 0 and 1.

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of 
    output is scalar, else the shape of output is same as input.

C
ceci3 已提交
362
    Parameters:
C
ceci3 已提交
363 364 365
        weight (Variable, optional): A manual rescaling weight given to the loss of each 
            batch element. If given, has to be a Variable of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
C
ceci3 已提交
366 367
        reduction (str, optional): Indicate how to average the loss by batch_size, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
368
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
C
ceci3 已提交
369
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
C
ceci3 已提交
370
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
371
            Default is ``'mean'``.
C
ceci3 已提交
372 373 374 375

    Returns: 
        A callable object of BCELoss.

C
ceci3 已提交
376 377
    Examples:
        .. code-block:: python
C
ceci3 已提交
378

C
ceci3 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            input = fluid.data(name="input", shape=[3, 1], dtype='float32')
            label = fluid.data(name="label", shape=[3, 1], dtype='float32')
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.65537095], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = bce_loss(input, label)
                print(output.numpy())  # [0.65537095]
    """

    def __init__(self, weight=None, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'bce_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'bce_loss')

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        self._helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]})

        if self.weight is not None:
            if isinstance(self.weight, fluid.framework.Variable):
                w = self.weight
C
ceci3 已提交
439
                out = fluid.layers.elementwise_mul(out, w, axis=-1)
C
ceci3 已提交
440 441 442 443 444 445 446 447 448 449
            else:
                raise ValueError(
                    "The weight is not a Variable, please convert to Variable.")

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(out)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(out)
        else:
            return out
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591


class NLLLoss(fluid.dygraph.Layer):
    """
    This op accepts input and target label and returns negative log likelihood 
    cross error. It is useful to train a classification problem with C classes.
     
    The input for the loss is epected to contain log-probabilities of
    each classes. It hs to be a Tensor of size either (batch_size, C) or 
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
    
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
 
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
        input (Variable): Input tensor, the data type is float32, float64. 
        label (Variable): Label tensor, the data type is int64_t.
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a Tensor of size `C`. Otherwise,
            it treated as if having all ones. the data type is 
            float32, float64, Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
            Default is ``'mean'``.
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.

    Returns:
        The tensor variable storing the nll_loss.

    Return type: Variable.
    
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle

            input_np = np.random.random(size=(10, 10)).astype(np.float32)
            label_np = np.random.randint(0, 10, size=(10,)).astype(np.int64)
            prog = fluid.Program()
            startup_prog = fluid.Program()
            place = fluid.CPUPlace()
            with fluid.program_guard(prog, startup_prog):
                input = fluid.data(name='input', shape=[10, 10], dtype='float32')
                label = fluid.data(name='label', shape=[10], dtype='int64')
                nll_loss = paddle.nn.loss.NLLLoss()
                res = nll_loss(input, label)

                exe = fluid.Executor(place)
                static_result = exe.run(
                    prog,
                    feed={"input": input_np,
                          "label": label_np},
                    fetch_list=[res])
            print(static_result)
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_np)
                label = dg.to_variable(label_np)
                output = nll_loss(input, label)
                print(output.numpy())
    """

    def __init__(self, weight=None, reduction='mean', ignore_index=-100):
        super(NLLLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
        self.ignore_index = ignore_index

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'nll_loss')

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % self.reduction)

        x_shape = list(input.shape)
        n = x_shape[0]
        c = x_shape[1]
        x_dims = len(x_shape)
        if x_dims < 2:
            raise ValueError('Expected 2 or more dimensions (got {})'.format(
                x_dims))
        if x_dims != 2 and x_dims != 4:
            input = fluid.layers.reshape(input, shape=[n, c, 1, -1])
            label = fluid.layers.reshape(label, shape=[n, 1, -1])
            out_shape = [n] + x_shape[2:]

        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': self.reduction, 'ignore_index': self.ignore_index}

        if self.weight is not None:
            if isinstance(self.weight, fluid.framework.Variable):
                inputs['Weight'] = self.weight

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        outputs = {'Out': out, 'Total_weight': total_weight}

        self._helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
        if x_dims != 2 and x_dims != 4 and self.reduction == 'none':
            out = fluid.layers.reshape(out, shape=out_shape)

        return out