test_recurrent_op.py 21.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yan Chunwei 已提交
15
import unittest
16 17 18

import numpy as np

19
import paddle
C
chengduo 已提交
20
import paddle.fluid as fluid
21
import paddle.fluid.core as core
22
import paddle.fluid.layers as layers
23
from paddle.fluid import ParamAttr
24
from paddle.fluid.backward import append_backward
25 26
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, grad_var_name
S
fix res  
superjom 已提交
27

28 29
np.random.seed(123)

S
fix res  
superjom 已提交
30

31
class PyRNNBase:
Y
Yu Yang 已提交
32 33 34
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
35

36 37
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
38 39 40

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
41 42
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
43 44 45 46

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
47 48 49

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
50
        super().__init__(input_shape, output_shape)
Y
Yu Yang 已提交
51 52

        seq_len, batch_size, input_dim = input_shape
53 54 55
        self.h_boot = np.random.normal(size=(batch_size, input_dim)).astype(
            "float32"
        )
Y
Yu Yang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
72
        super().__init__(input_shape, output_shape)
Y
Yu Yang 已提交
73 74

        seq_len, batch_size, input_dim = input_shape
75 76
        self.W = np.ones(shape=(input_dim, input_dim)).astype("float32")
        self.U = np.zeros(shape=(input_dim, input_dim)).astype("float32")
Y
Yu Yang 已提交
77 78 79 80
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
81 82 83

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
84
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
85 86
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
87 88
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
89

Y
Yu Yang 已提交
90
        def py_sigmoid(x):
91
            return 1.0 / (1.0 + np.exp(-x))
S
fix res  
superjom 已提交
92

Y
Yu Yang 已提交
93 94
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
95 96


Y
Yu Yang 已提交
97 98 99
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
100 101 102
    return tensor


Y
Yu Yang 已提交
103
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
104 105 106
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
107
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
108 109 110 111 112
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
113
        - h
Y
Yan Chunwei 已提交
114 115
    '''

Y
Yu Yang 已提交
116 117 118 119
    input_dim = 2
    batch_size = 1
    sent_len = 1

120 121 122
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
123
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
124

S
superjom 已提交
125
    def setUp(self):
126
        self.setup_program()
127 128
        self.feed_data_field = {"x", "h_boot"}
        self.grad_data_field = self.feed_data_field
Y
Yan Chunwei 已提交
129

Y
Yu Yang 已提交
130 131 132 133
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

C
chengduo 已提交
134
        with fluid.program_guard(self.main_program, self.startup_program):
135
            self.output = paddle.mean(self.create_rnn_op())
Y
Yan Chunwei 已提交
136 137

    def create_rnn_op(self):
138 139 140 141 142 143
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
144
        x.stop_gradient = False
145 146 147
        h_boot = layers.data(
            shape=[self.input_dim], dtype='float32', name='h_boot'
        )
Y
Yu Yang 已提交
148
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
149

C
chengduo 已提交
150
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
151 152 153 154
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

2
201716010711 已提交
155
            h = paddle.scale(
156 157 158
                x=layers.elementwise_add(x=h_pre, y=x_t),
                scale=self.py_rnn.scale,
            )
Y
Yu Yang 已提交
159 160 161 162 163 164 165 166 167

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
168
            for x in self.feed_data_field
Y
Yu Yang 已提交
169 170
        }
        exe = Executor(self.place)
171 172 173
        out = exe.run(
            self.main_program, feed=self.feed_map, fetch_list=[self.output]
        )
Y
Yu Yang 已提交
174

D
dzhwinter 已提交
175
        return out[0]
Y
Yu Yang 已提交
176 177 178 179

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
180
            for x in self.feed_data_field
Y
Yu Yang 已提交
181 182
        }
        fetch_list = [
Q
qiaolongfei 已提交
183
            self.main_program.global_block().var(grad_var_name(x))
184
            for x in self.grad_data_field
Y
Yu Yang 已提交
185 186 187
        ]

        exe = Executor(self.place)
188 189 190 191 192 193
        return exe.run(
            self.main_program,
            feed=self.feed_map,
            fetch_list=fetch_list,
            return_numpy=False,
        )
Y
Yu Yang 已提交
194

195
    def test_backward(self, rtol=0.01):
Y
Yu Yang 已提交
196 197
        self.check_forward()

C
chengduo 已提交
198 199
        with fluid.program_guard(self.main_program, self.startup_program):
            append_backward(self.output)
Y
Yu Yang 已提交
200 201 202 203

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
204
        for idx, name in enumerate(self.grad_data_field):
Y
Yu Yang 已提交
205
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
206 207 208 209 210
            np.testing.assert_allclose(
                num_grad[idx],
                ana_grad[idx],
                rtol=rtol,
                atol=1e-8,
211 212 213 214 215 216 217 218 219 220 221 222
                err_msg='num_grad ('
                + name
                + ') has diff at '
                + str(self.place)
                + '\nExpect '
                + str(num_grad[idx])
                + '\n'
                + 'But Got'
                + str(ana_grad[idx])
                + ' in class '
                + self.__class__.__name__,
            )
Y
Yu Yang 已提交
223 224

    def check_forward(self):
S
superjom 已提交
225 226 227
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        self.assertEqual(pd_output.shape, py_output.shape)
228
        np.testing.assert_allclose(pd_output, py_output, rtol=0.01)
Y
Yan Chunwei 已提交
229

Y
Yu Yang 已提交
230 231
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
232
        feed_list = [getattr(self.py_rnn, x) for x in self.grad_data_field]
Y
Yu Yang 已提交
233 234 235 236 237 238
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
239

Y
Yu Yang 已提交
240 241 242 243 244 245 246 247 248 249 250
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
251
    r'''
Y
Yu Yang 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
271
        self.setup_program()
Y
Yu Yang 已提交
272

273 274
        self.feed_data_field = {"x", "h_boot", "W", "U"}
        self.grad_data_field = self.feed_data_field
Y
Yu Yang 已提交
275 276 277 278 279

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

C
chengduo 已提交
280
        with fluid.program_guard(self.main_program, self.startup_program):
281
            self.output = paddle.mean(self.create_rnn_op())
Y
Yu Yang 已提交
282 283

    def create_rnn_op(self):
284 285 286 287 288 289
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
290
        x.stop_gradient = False
291 292 293
        h_boot = layers.data(
            shape=[self.input_dim], dtype='float32', name='h_boot'
        )
Y
Yu Yang 已提交
294
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
295

C
chengduo 已提交
296
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
297 298 299 300
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

301 302 303 304 305
            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='W',
306 307 308 309
                    initializer=fluid.initializer.ConstantInitializer(1.0),
                ),
                bias_attr=False,
            )
310 311 312 313 314
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='U',
315 316 317 318
                    initializer=fluid.initializer.ConstantInitializer(0.0),
                ),
                bias_attr=False,
            )
319

320 321 322
            h = paddle.nn.functional.sigmoid(
                x=layers.elementwise_add(x=temp_l, y=temp_r)
            )
Y
Yu Yang 已提交
323 324 325 326 327 328

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

C
chengduo 已提交
329
    def test_backward(self):
330
        super().test_backward(rtol=0.01)
C
chengduo 已提交
331

Y
Yu Yang 已提交
332

333
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
350
            super().__init__(input_shape, output_shape)
Y
Yu Yang 已提交
351 352

            seq_len, batch_size, input_dim = input_shape
353 354 355 356 357 358
            self.h_boot1 = np.random.normal(
                size=(batch_size, input_dim)
            ).astype("float32")
            self.h_boot2 = np.random.normal(
                size=(batch_size, input_dim)
            ).astype("float32")
Y
Yu Yang 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
380
        self.setup_program()
Y
Yu Yang 已提交
381

382 383
        self.feed_data_field = {"x", "h_boot1", "h_boot2"}
        self.grad_data_field = self.feed_data_field
Y
Yu Yang 已提交
384 385 386

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
387
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
388 389
            self.input_shape, self.output_shape
        )
Y
Yu Yang 已提交
390

C
chengduo 已提交
391
        with fluid.program_guard(self.main_program, self.startup_program):
392
            self.output = paddle.mean(self.create_rnn_op())
Y
Yu Yang 已提交
393 394

    def create_rnn_op(self):
395 396 397 398 399 400
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
401
        x.stop_gradient = False
402 403 404 405 406 407
        h_boot1 = layers.data(
            shape=[self.batch_size, self.input_dim],
            dtype='float32',
            name='h_boot1',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
408
        h_boot1.stop_gradient = False
409 410 411 412 413 414
        h_boot2 = layers.data(
            shape=[self.batch_size, self.input_dim],
            dtype='float32',
            name='h_boot2',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
415
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
416

C
chengduo 已提交
417
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
418 419 420 421 422
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

2
201716010711 已提交
423 424
            mem1 = paddle.scale(x=h_pre1, scale=1.0)
            mem2 = paddle.scale(x=h_pre2, scale=1.0)
C
chengduo 已提交
425
            out = layers.sums(input=[mem1, x_t, mem2])
Y
Yu Yang 已提交
426 427 428 429 430 431

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
432 433


434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
450
            super().__init__(input_shape, output_shape)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

469 470
        self.feed_data_field = {"x"}
        self.grad_data_field = self.feed_data_field
471 472 473

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
474
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(
475 476
            self.input_shape, self.output_shape
        )
C
chengduo 已提交
477 478

        with fluid.program_guard(self.main_program, self.startup_program):
479
            self.output = paddle.mean(self.create_rnn_op())
480 481

    def create_rnn_op(self):
482 483 484 485 486 487
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
488 489
        x.stop_gradient = False

C
chengduo 已提交
490
        rnn = layers.StaticRNN()
491 492 493
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
C
chengduo 已提交
494
            mem = layers.elementwise_add(x=mem_pre, y=x_t)
495 496 497 498 499 500
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


501
class RecurrentOpSubBlockTest(RecurrentOpTest1):
502
    r'''
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    Test RNNOp with subblock variable
    equation:
        y_ = emb * w1
        h_t = \concat([x, h_{t-1}])
        h_t = h_t * w2
        h_t = \\unsqueeze(h_t, 1)
        h_t = \dot_attention(h_t, y_)
        h_t = \squeeze(h_t, 1)
        y = h_t
    vars:
        - x
        - w1
        - w2
    memories:
        - h
    outputs:
       - y
    '''

    class PySimpleRNN5(PyRNNBase):
        def __init__(self, input_shape, output_shape):
524
            super().__init__(input_shape, output_shape)
525 526

            seq_len, batch_size, input_dim = input_shape
527 528 529 530 531 532 533 534 535 536
            self.w1 = np.random.uniform(
                -0.1, 0.1, size=(input_dim, input_dim)
            ).astype("float32")
            self.w2 = np.random.uniform(
                -0.1, 0.1, size=(input_dim * 2, input_dim)
            ).astype("float32")

            self.emb = np.random.uniform(
                -0.1, 0.1, size=(seq_len, batch_size, input_dim)
            ).astype("float32")
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

            men_dim = (seq_len, batch_size, input_dim)
            self.mems = np.zeros(shape=men_dim).astype("float32")
            self.oy = np.matmul(self.emb, self.w1)

        def step(self, step_id, x):
            def dot_attention(query, memory):
                attn = np.matmul(query, memory.transpose((0, 2, 1)))
                weight = softmax(attn)
                weight_memory = np.matmul(weight, memory)
                return weight_memory, weight

            def softmax(x):
                return np.exp(x) / sum(np.exp(x))

            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            concat_in = np.concatenate([x, pre_mem], 1)
            new_mem = np.matmul(concat_in, self.w2)

            new_mem = np.expand_dims(new_mem, 1)
            new_mem, _ = dot_attention(new_mem, self.oy)
            new_mem = np.squeeze(new_mem, 1)

            self.mems[step_id] = new_mem
            self.y[step_id] = self.mems[step_id]

    input_dim = 2
    batch_size = 3
    sent_len = 3

    def setUp(self):
        self.setup_program()

573 574
        self.feed_data_field = {"x", "emb", "w1", "w2"}
        self.grad_data_field = self.feed_data_field
575 576 577

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
578
        self.py_rnn = RecurrentOpSubBlockTest.PySimpleRNN5(
579 580
            self.input_shape, self.output_shape
        )
581 582 583

        with fluid.program_guard(self.main_program, self.startup_program):
            rnn_out = self.create_rnn_op()
584
            self.output = paddle.mean(rnn_out)
585 586

    def create_rnn_op(self):
587 588 589 590 591 592
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
593 594 595 596 597 598
        x.stop_gradient = False

        emb = layers.data(
            name='emb',
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
599 600
            append_batch_size=False,
        )
601 602
        emb.stop_gradient = False

603 604 605 606 607 608
        w1 = layers.data(
            shape=[self.input_dim, self.input_dim],
            dtype='float32',
            name='w1',
            append_batch_size=False,
        )
609
        w1.stop_gradient = False
610 611 612 613 614 615
        w2 = layers.data(
            shape=[self.input_dim * 2, self.input_dim],
            dtype='float32',
            name='w2',
            append_batch_size=False,
        )
616 617 618 619 620 621 622 623 624 625 626 627 628
        w2.stop_gradient = False

        rnn = layers.StaticRNN()

        def dot_attention(query, memory):
            attn = layers.matmul(query, memory, transpose_y=True)
            weight = layers.softmax(attn)
            weight_memory = layers.matmul(weight, memory)

            return weight_memory, weight

        y = layers.matmul(emb, w1)
        with rnn.step():
629 630 631 632 633
            pre_h = rnn.memory(
                shape=(self.sent_len, self.input_dim),
                batch_ref=x,
                init_value=0.0,
            )
634 635 636 637 638
            step_in = rnn.step_input(x)
            concat_in = layers.concat([step_in, pre_h], 1)
            new_h = layers.matmul(concat_in, w2)
            new_h = layers.unsqueeze(new_h, [1])
            new_h, _ = dot_attention(new_h, y)
639
            new_h = paddle.squeeze(new_h, [1])
640 641 642 643 644 645 646

            rnn.update_memory(pre_h, new_h)
            rnn.step_output(new_h)

        return rnn()


647
class RecurrentOpStopGradientTest(RecurrentOpTest1):
648
    r"""
649 650 651 652 653
    Test RNNOp with stop_gradient = True
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
654
        - U
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
    vars:
        - x
    memories:
        - h
    output:
        - h
    """

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
        self.setup_program()
        self.feed_data_field = {"x", "h_boot", "W", "U"}
        self.grad_data_field = {"x", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

        with fluid.program_guard(self.main_program, self.startup_program):
677
            self.output = paddle.mean(self.create_rnn_op())
678 679

    def create_rnn_op(self):
680 681 682 683 684 685
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype="float32",
            name="x",
            append_batch_size=False,
        )
686
        x.stop_gradient = False
687 688 689
        h_boot = layers.data(
            shape=[self.input_dim], dtype="float32", name="h_boot"
        )
690 691 692 693 694 695 696 697 698 699 700 701
        h_boot.stop_gradient = True

        rnn = layers.StaticRNN()
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)  # init doesn't have gradient
            x_t = rnn.step_input(x)

            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name="W",
702 703 704 705
                    initializer=fluid.initializer.ConstantInitializer(1.0),
                ),
                bias_attr=False,
            )
706 707 708 709 710
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name="U",
711 712 713 714
                    initializer=fluid.initializer.ConstantInitializer(0.0),
                ),
                bias_attr=False,
            )
715

716 717 718
            h = paddle.nn.functional.sigmoid(
                x=layers.elementwise_add(temp_l, temp_r)
            )
719 720 721 722 723 724 725

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()


Y
Yan Chunwei 已提交
726 727
if __name__ == '__main__':
    unittest.main()