test_recurrent_op.py 21.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yan Chunwei 已提交
17
import unittest
C
chengduo 已提交
18
import paddle.fluid as fluid
19
import paddle.fluid.layers as layers
20 21 22 23
import numpy as np
import paddle.fluid.core as core

from paddle.fluid import ParamAttr
24 25 26
from paddle.fluid.framework import Program, grad_var_name
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
S
fix res  
superjom 已提交
27

28 29
np.random.seed(123)

S
fix res  
superjom 已提交
30

Y
Yu Yang 已提交
31 32 33 34
class PyRNNBase(object):
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
35

36 37
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
38 39 40

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
41 42
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
43 44 45 46

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN1, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.h_boot = np.random.normal(size=(batch_size,
                                             input_dim)).astype("float32")

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN2, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
74 75
        self.W = np.ones(shape=(input_dim, input_dim)).astype("float32")
        self.U = np.zeros(shape=(input_dim, input_dim)).astype("float32")
Y
Yu Yang 已提交
76 77 78 79
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
80 81 82

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
83
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
84 85
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
86 87
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
88

Y
Yu Yang 已提交
89 90
        def py_sigmoid(x):
            return 1. / (1. + np.exp(-x))
S
fix res  
superjom 已提交
91

Y
Yu Yang 已提交
92 93
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
94 95


Y
Yu Yang 已提交
96 97 98
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
99 100 101
    return tensor


Y
Yu Yang 已提交
102
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
103 104 105
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
106
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
107 108 109 110 111
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
112
        - h
Y
Yan Chunwei 已提交
113 114
    '''

Y
Yu Yang 已提交
115 116 117 118
    input_dim = 2
    batch_size = 1
    sent_len = 1

119 120 121
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
122
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
123

S
superjom 已提交
124
    def setUp(self):
125
        self.setup_program()
126 127
        self.feed_data_field = {"x", "h_boot"}
        self.grad_data_field = self.feed_data_field
Y
Yan Chunwei 已提交
128

Y
Yu Yang 已提交
129 130 131 132
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

C
chengduo 已提交
133 134
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yan Chunwei 已提交
135 136

    def create_rnn_op(self):
137
        x = layers.data(
Y
Yu Yang 已提交
138
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
139
            dtype='float32',
Y
Yu Yang 已提交
140
            name='x',
C
chengduo 已提交
141
            append_batch_size=False)
Y
Yu Yang 已提交
142
        x.stop_gradient = False
143
        h_boot = layers.data(
C
chengduo 已提交
144
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
145
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
146

C
chengduo 已提交
147
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
148 149 150 151
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

152 153
            h = layers.scale(
                x=layers.elementwise_add(
C
chengduo 已提交
154 155
                    x=h_pre, y=x_t),
                scale=self.py_rnn.scale)
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
165
            for x in self.feed_data_field
Y
Yu Yang 已提交
166 167
        }
        exe = Executor(self.place)
168
        out = exe.run(self.main_program,
Y
Yu Yang 已提交
169 170 171
                      feed=self.feed_map,
                      fetch_list=[self.output])

D
dzhwinter 已提交
172
        return out[0]
Y
Yu Yang 已提交
173 174 175 176

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
177
            for x in self.feed_data_field
Y
Yu Yang 已提交
178 179
        }
        fetch_list = [
Q
qiaolongfei 已提交
180
            self.main_program.global_block().var(grad_var_name(x))
181
            for x in self.grad_data_field
Y
Yu Yang 已提交
182 183 184
        ]

        exe = Executor(self.place)
185 186
        return exe.run(self.main_program,
                       feed=self.feed_map,
D
dzhwinter 已提交
187 188
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yu Yang 已提交
189

190
    def test_backward(self, rtol=0.01):
Y
Yu Yang 已提交
191 192
        self.check_forward()

C
chengduo 已提交
193 194
        with fluid.program_guard(self.main_program, self.startup_program):
            append_backward(self.output)
Y
Yu Yang 已提交
195 196 197 198

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
199
        for idx, name in enumerate(self.grad_data_field):
Y
Yu Yang 已提交
200 201 202
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
            self.assertTrue(
                np.isclose(
C
chengduo 已提交
203 204 205 206
                    num_grad[idx], ana_grad[idx], rtol=rtol).all(),
                "num_grad (" + name + ") has diff at " + str(self.place) +
                "\nExpect " + str(num_grad[idx]) + "\n" + "But Got" +
                str(ana_grad[idx]) + " in class " + self.__class__.__name__)
Y
Yu Yang 已提交
207 208

    def check_forward(self):
S
superjom 已提交
209 210 211
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        self.assertEqual(pd_output.shape, py_output.shape)
212
        self.assertTrue(np.isclose(pd_output, py_output, rtol=0.01).all())
Y
Yan Chunwei 已提交
213

Y
Yu Yang 已提交
214 215
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
216
        feed_list = [getattr(self.py_rnn, x) for x in self.grad_data_field]
Y
Yu Yang 已提交
217 218 219 220 221 222
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
223

Y
Yu Yang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
    '''
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
255
        self.setup_program()
Y
Yu Yang 已提交
256

257 258
        self.feed_data_field = {"x", "h_boot", "W", "U"}
        self.grad_data_field = self.feed_data_field
Y
Yu Yang 已提交
259 260 261 262 263

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

C
chengduo 已提交
264 265
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
266 267

    def create_rnn_op(self):
268
        x = layers.data(
Y
Yu Yang 已提交
269
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
270
            dtype='float32',
Y
Yu Yang 已提交
271
            name='x',
C
chengduo 已提交
272
            append_batch_size=False)
Y
Yu Yang 已提交
273
        x.stop_gradient = False
274
        h_boot = layers.data(
C
chengduo 已提交
275
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
276
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
277

C
chengduo 已提交
278
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
279 280 281 282
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

283 284 285 286 287 288 289 290 291 292 293 294 295 296
            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='W',
                    initializer=fluid.initializer.ConstantInitializer(1.0)),
                bias_attr=False)
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='U',
                    initializer=fluid.initializer.ConstantInitializer(0.0)),
                bias_attr=False)
297

C
chengduo 已提交
298
            h = layers.sigmoid(x=layers.elementwise_add(x=temp_l, y=temp_r))
Y
Yu Yang 已提交
299 300 301 302 303 304

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

C
chengduo 已提交
305
    def test_backward(self):
306
        super(RecurrentOpTest2, self).test_backward(rtol=0.01)
C
chengduo 已提交
307

Y
Yu Yang 已提交
308

309
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
326 327
            super(RecurrentOpMultipleMemoryTest.PySimpleRNN3, self).__init__(
                input_shape, output_shape)
Y
Yu Yang 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

            seq_len, batch_size, input_dim = input_shape
            self.h_boot1 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")
            self.h_boot2 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
355
        self.setup_program()
Y
Yu Yang 已提交
356

357 358
        self.feed_data_field = {"x", "h_boot1", "h_boot2"}
        self.grad_data_field = self.feed_data_field
Y
Yu Yang 已提交
359 360 361

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
362 363
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
            self.input_shape, self.output_shape)
Y
Yu Yang 已提交
364

C
chengduo 已提交
365 366
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
367 368

    def create_rnn_op(self):
369
        x = layers.data(
Y
Yu Yang 已提交
370
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
371
            dtype='float32',
Y
Yu Yang 已提交
372
            name='x',
C
chengduo 已提交
373
            append_batch_size=False)
Y
Yu Yang 已提交
374
        x.stop_gradient = False
375
        h_boot1 = layers.data(
Y
Yu Yang 已提交
376
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
377
            dtype='float32',
Y
Yu Yang 已提交
378
            name='h_boot1',
C
chengduo 已提交
379
            append_batch_size=False)
Y
Yu Yang 已提交
380
        h_boot1.stop_gradient = False
381
        h_boot2 = layers.data(
Y
Yu Yang 已提交
382
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
383
            dtype='float32',
Y
Yu Yang 已提交
384
            name='h_boot2',
C
chengduo 已提交
385
            append_batch_size=False)
Y
Yu Yang 已提交
386
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
387

C
chengduo 已提交
388
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
389 390 391 392 393
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

C
chengduo 已提交
394 395 396
            mem1 = layers.scale(x=h_pre1, scale=1.0)
            mem2 = layers.scale(x=h_pre2, scale=1.0)
            out = layers.sums(input=[mem1, x_t, mem2])
Y
Yu Yang 已提交
397 398 399 400 401 402

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
403 404


405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpNoMemBootTest.PySimpleRNN4, self).__init__(
                input_shape, output_shape)
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

441 442
        self.feed_data_field = {"x"}
        self.grad_data_field = self.feed_data_field
443 444 445 446 447

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
                                                            self.output_shape)
C
chengduo 已提交
448 449 450

        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
451 452 453 454

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
455
            dtype='float32',
456
            name='x',
C
chengduo 已提交
457
            append_batch_size=False)
458 459
        x.stop_gradient = False

C
chengduo 已提交
460
        rnn = layers.StaticRNN()
461 462 463
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
C
chengduo 已提交
464
            mem = layers.elementwise_add(x=mem_pre, y=x_t)
465 466 467 468 469 470
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
class RecurrentOpSubBlockTest(RecurrentOpTest1):
    '''
    Test RNNOp with subblock variable
    equation:
        y_ = emb * w1
        h_t = \concat([x, h_{t-1}])
        h_t = h_t * w2
        h_t = \\unsqueeze(h_t, 1)
        h_t = \dot_attention(h_t, y_)
        h_t = \squeeze(h_t, 1)
        y = h_t
    vars:
        - x
        - w1
        - w2
    memories:
        - h
    outputs:
       - y
    '''

    class PySimpleRNN5(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpSubBlockTest.PySimpleRNN5, self).__init__(
                input_shape, output_shape)

            seq_len, batch_size, input_dim = input_shape
            self.w1 = np.random.uniform(
                -0.1, 0.1, size=(input_dim, input_dim)).astype("float32")
            self.w2 = np.random.uniform(
                -0.1, 0.1, size=(input_dim * 2, input_dim)).astype("float32")

            self.emb = np.random.uniform(
                -0.1, 0.1, size=(seq_len, batch_size,
                                 input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems = np.zeros(shape=men_dim).astype("float32")
            self.oy = np.matmul(self.emb, self.w1)

        def step(self, step_id, x):
            def dot_attention(query, memory):
                attn = np.matmul(query, memory.transpose((0, 2, 1)))
                weight = softmax(attn)
                weight_memory = np.matmul(weight, memory)
                return weight_memory, weight

            def softmax(x):
                return np.exp(x) / sum(np.exp(x))

            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            concat_in = np.concatenate([x, pre_mem], 1)
            new_mem = np.matmul(concat_in, self.w2)

            new_mem = np.expand_dims(new_mem, 1)
            new_mem, _ = dot_attention(new_mem, self.oy)
            new_mem = np.squeeze(new_mem, 1)

            self.mems[step_id] = new_mem
            self.y[step_id] = self.mems[step_id]

    input_dim = 2
    batch_size = 3
    sent_len = 3

    def setUp(self):
        self.setup_program()

542 543
        self.feed_data_field = {"x", "emb", "w1", "w2"}
        self.grad_data_field = self.feed_data_field
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpSubBlockTest.PySimpleRNN5(self.input_shape,
                                                           self.output_shape)

        with fluid.program_guard(self.main_program, self.startup_program):
            rnn_out = self.create_rnn_op()
            self.output = layers.mean(rnn_out)

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False)
        x.stop_gradient = False

        emb = layers.data(
            name='emb',
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            append_batch_size=False)
        emb.stop_gradient = False

        w1 = layers.data(
            shape=[self.input_dim, self.input_dim],
            dtype='float32',
            name='w1',
            append_batch_size=False)
        w1.stop_gradient = False
        w2 = layers.data(
            shape=[self.input_dim * 2, self.input_dim],
            dtype='float32',
            name='w2',
            append_batch_size=False)
        w2.stop_gradient = False

        rnn = layers.StaticRNN()

        def dot_attention(query, memory):
            attn = layers.matmul(query, memory, transpose_y=True)
            weight = layers.softmax(attn)
            weight_memory = layers.matmul(weight, memory)

            return weight_memory, weight

        y = layers.matmul(emb, w1)
        with rnn.step():
            pre_h = rnn.memory(
                shape=(self.sent_len, self.input_dim),
                batch_ref=x,
                init_value=0.0)
            step_in = rnn.step_input(x)
            concat_in = layers.concat([step_in, pre_h], 1)
            new_h = layers.matmul(concat_in, w2)
            new_h = layers.unsqueeze(new_h, [1])
            new_h, _ = dot_attention(new_h, y)
            new_h = layers.squeeze(new_h, [1])

            rnn.update_memory(pre_h, new_h)
            rnn.step_output(new_h)

        return rnn()


610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
class RecurrentOpStopGradientTest(RecurrentOpTest1):
    """
    Test RNNOp with stop_gradient = True
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
	- U
    vars:
        - x
    memories:
        - h
    output:
        - h
    """

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
        self.setup_program()
        self.feed_data_field = {"x", "h_boot", "W", "U"}
        self.grad_data_field = {"x", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype="float32",
            name="x",
            append_batch_size=False)
        x.stop_gradient = False
        h_boot = layers.data(
            shape=[self.input_dim], dtype="float32", name="h_boot")
        h_boot.stop_gradient = True

        rnn = layers.StaticRNN()
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)  # init doesn't have gradient
            x_t = rnn.step_input(x)

            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name="W",
                    initializer=fluid.initializer.ConstantInitializer(1.0)),
                bias_attr=False)
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name="U",
                    initializer=fluid.initializer.ConstantInitializer(0.0)),
                bias_attr=False)

            h = layers.sigmoid(x=layers.elementwise_add(temp_l, temp_r))

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()


Y
Yan Chunwei 已提交
681 682
if __name__ == '__main__':
    unittest.main()