test_recurrent_op.py 18.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yan Chunwei 已提交
17
import unittest
C
chengduo 已提交
18
import paddle.fluid as fluid
19
import paddle.fluid.layers as layers
20 21 22 23
import numpy as np
import paddle.fluid.core as core

from paddle.fluid import ParamAttr
24 25 26
from paddle.fluid.framework import Program, grad_var_name
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
S
fix res  
superjom 已提交
27

28 29
np.random.seed(123)

S
fix res  
superjom 已提交
30

Y
Yu Yang 已提交
31 32 33 34
class PyRNNBase(object):
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
35

36 37
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
38 39 40

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
41 42
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
43 44 45 46

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN1, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.h_boot = np.random.normal(size=(batch_size,
                                             input_dim)).astype("float32")

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN2, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
74 75
        self.W = np.ones(shape=(input_dim, input_dim)).astype("float32")
        self.U = np.zeros(shape=(input_dim, input_dim)).astype("float32")
Y
Yu Yang 已提交
76 77 78 79
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
80 81 82

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
83
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
84 85
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
86 87
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
88

Y
Yu Yang 已提交
89 90
        def py_sigmoid(x):
            return 1. / (1. + np.exp(-x))
S
fix res  
superjom 已提交
91

Y
Yu Yang 已提交
92 93
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
94 95


Y
Yu Yang 已提交
96 97 98
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
99 100 101
    return tensor


Y
Yu Yang 已提交
102
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
103 104 105
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
106
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
107 108 109 110 111
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
112
        - h
Y
Yan Chunwei 已提交
113 114
    '''

Y
Yu Yang 已提交
115 116 117 118
    input_dim = 2
    batch_size = 1
    sent_len = 1

119 120 121
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
122
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
123

S
superjom 已提交
124
    def setUp(self):
125
        self.setup_program()
Y
Yu Yang 已提交
126
        self.data_field = {"x", "h_boot"}
Y
Yan Chunwei 已提交
127

Y
Yu Yang 已提交
128 129 130 131
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

C
chengduo 已提交
132 133
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yan Chunwei 已提交
134 135

    def create_rnn_op(self):
136
        x = layers.data(
Y
Yu Yang 已提交
137
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
138
            dtype='float32',
Y
Yu Yang 已提交
139
            name='x',
C
chengduo 已提交
140
            append_batch_size=False)
Y
Yu Yang 已提交
141
        x.stop_gradient = False
142
        h_boot = layers.data(
C
chengduo 已提交
143
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
144
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
145

C
chengduo 已提交
146
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
147 148 149 150
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

151 152
            h = layers.scale(
                x=layers.elementwise_add(
C
chengduo 已提交
153 154
                    x=h_pre, y=x_t),
                scale=self.py_rnn.scale)
Y
Yu Yang 已提交
155 156 157 158 159 160 161 162 163 164 165 166

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        exe = Executor(self.place)
167
        out = exe.run(self.main_program,
Y
Yu Yang 已提交
168 169 170
                      feed=self.feed_map,
                      fetch_list=[self.output])

D
dzhwinter 已提交
171
        return out[0]
Y
Yu Yang 已提交
172 173 174 175 176 177 178

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        fetch_list = [
Q
qiaolongfei 已提交
179
            self.main_program.global_block().var(grad_var_name(x))
Y
Yu Yang 已提交
180 181 182 183
            for x in self.data_field
        ]

        exe = Executor(self.place)
184 185
        return exe.run(self.main_program,
                       feed=self.feed_map,
D
dzhwinter 已提交
186 187
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yu Yang 已提交
188

189
    def test_backward(self, rtol=0.01):
Y
Yu Yang 已提交
190 191
        self.check_forward()

C
chengduo 已提交
192 193
        with fluid.program_guard(self.main_program, self.startup_program):
            append_backward(self.output)
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
        for idx, name in enumerate(self.data_field):
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
            self.assertTrue(
                np.isclose(
C
chengduo 已提交
202 203 204 205
                    num_grad[idx], ana_grad[idx], rtol=rtol).all(),
                "num_grad (" + name + ") has diff at " + str(self.place) +
                "\nExpect " + str(num_grad[idx]) + "\n" + "But Got" +
                str(ana_grad[idx]) + " in class " + self.__class__.__name__)
Y
Yu Yang 已提交
206 207

    def check_forward(self):
S
superjom 已提交
208 209 210
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        self.assertEqual(pd_output.shape, py_output.shape)
211
        self.assertTrue(np.isclose(pd_output, py_output, rtol=0.01).all())
Y
Yan Chunwei 已提交
212

Y
Yu Yang 已提交
213 214 215 216 217 218 219 220 221
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
        feed_list = [getattr(self.py_rnn, x) for x in self.data_field]
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
222

Y
Yu Yang 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
    '''
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
254
        self.setup_program()
Y
Yu Yang 已提交
255 256 257 258 259 260 261

        self.data_field = {"x", "h_boot", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

C
chengduo 已提交
262 263
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
264 265

    def create_rnn_op(self):
266
        x = layers.data(
Y
Yu Yang 已提交
267
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
268
            dtype='float32',
Y
Yu Yang 已提交
269
            name='x',
C
chengduo 已提交
270
            append_batch_size=False)
Y
Yu Yang 已提交
271
        x.stop_gradient = False
272
        h_boot = layers.data(
C
chengduo 已提交
273
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
274
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
275

C
chengduo 已提交
276
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
277 278 279 280
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

281 282 283 284 285 286 287 288 289 290 291 292 293 294
            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='W',
                    initializer=fluid.initializer.ConstantInitializer(1.0)),
                bias_attr=False)
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='U',
                    initializer=fluid.initializer.ConstantInitializer(0.0)),
                bias_attr=False)
295

C
chengduo 已提交
296
            h = layers.sigmoid(x=layers.elementwise_add(x=temp_l, y=temp_r))
Y
Yu Yang 已提交
297 298 299 300 301 302

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

C
chengduo 已提交
303
    def test_backward(self):
304
        super(RecurrentOpTest2, self).test_backward(rtol=0.01)
C
chengduo 已提交
305

Y
Yu Yang 已提交
306

307
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
324 325
            super(RecurrentOpMultipleMemoryTest.PySimpleRNN3, self).__init__(
                input_shape, output_shape)
Y
Yu Yang 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

            seq_len, batch_size, input_dim = input_shape
            self.h_boot1 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")
            self.h_boot2 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
353
        self.setup_program()
Y
Yu Yang 已提交
354 355 356 357 358

        self.data_field = {"x", "h_boot1", "h_boot2"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
359 360
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
            self.input_shape, self.output_shape)
Y
Yu Yang 已提交
361

C
chengduo 已提交
362 363
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
364 365

    def create_rnn_op(self):
366
        x = layers.data(
Y
Yu Yang 已提交
367
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
368
            dtype='float32',
Y
Yu Yang 已提交
369
            name='x',
C
chengduo 已提交
370
            append_batch_size=False)
Y
Yu Yang 已提交
371
        x.stop_gradient = False
372
        h_boot1 = layers.data(
Y
Yu Yang 已提交
373
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
374
            dtype='float32',
Y
Yu Yang 已提交
375
            name='h_boot1',
C
chengduo 已提交
376
            append_batch_size=False)
Y
Yu Yang 已提交
377
        h_boot1.stop_gradient = False
378
        h_boot2 = layers.data(
Y
Yu Yang 已提交
379
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
380
            dtype='float32',
Y
Yu Yang 已提交
381
            name='h_boot2',
C
chengduo 已提交
382
            append_batch_size=False)
Y
Yu Yang 已提交
383
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
384

C
chengduo 已提交
385
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
386 387 388 389 390
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

C
chengduo 已提交
391 392 393
            mem1 = layers.scale(x=h_pre1, scale=1.0)
            mem2 = layers.scale(x=h_pre2, scale=1.0)
            out = layers.sums(input=[mem1, x_t, mem2])
Y
Yu Yang 已提交
394 395 396 397 398 399

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
400 401


402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpNoMemBootTest.PySimpleRNN4, self).__init__(
                input_shape, output_shape)
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

        self.data_field = {"x"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
                                                            self.output_shape)
C
chengduo 已提交
444 445 446

        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
447 448 449 450

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
451
            dtype='float32',
452
            name='x',
C
chengduo 已提交
453
            append_batch_size=False)
454 455
        x.stop_gradient = False

C
chengduo 已提交
456
        rnn = layers.StaticRNN()
457 458 459
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
C
chengduo 已提交
460
            mem = layers.elementwise_add(x=mem_pre, y=x_t)
461 462 463 464 465 466
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
class RecurrentOpSubBlockTest(RecurrentOpTest1):
    '''
    Test RNNOp with subblock variable
    equation:
        y_ = emb * w1
        h_t = \concat([x, h_{t-1}])
        h_t = h_t * w2
        h_t = \\unsqueeze(h_t, 1)
        h_t = \dot_attention(h_t, y_)
        h_t = \squeeze(h_t, 1)
        y = h_t
    vars:
        - x
        - w1
        - w2
    memories:
        - h
    outputs:
       - y
    '''

    class PySimpleRNN5(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpSubBlockTest.PySimpleRNN5, self).__init__(
                input_shape, output_shape)

            seq_len, batch_size, input_dim = input_shape
            self.w1 = np.random.uniform(
                -0.1, 0.1, size=(input_dim, input_dim)).astype("float32")
            self.w2 = np.random.uniform(
                -0.1, 0.1, size=(input_dim * 2, input_dim)).astype("float32")

            self.emb = np.random.uniform(
                -0.1, 0.1, size=(seq_len, batch_size,
                                 input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems = np.zeros(shape=men_dim).astype("float32")
            self.oy = np.matmul(self.emb, self.w1)

        def step(self, step_id, x):
            def dot_attention(query, memory):
                attn = np.matmul(query, memory.transpose((0, 2, 1)))
                weight = softmax(attn)
                weight_memory = np.matmul(weight, memory)
                return weight_memory, weight

            def softmax(x):
                return np.exp(x) / sum(np.exp(x))

            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            concat_in = np.concatenate([x, pre_mem], 1)
            new_mem = np.matmul(concat_in, self.w2)

            new_mem = np.expand_dims(new_mem, 1)
            new_mem, _ = dot_attention(new_mem, self.oy)
            new_mem = np.squeeze(new_mem, 1)

            self.mems[step_id] = new_mem
            self.y[step_id] = self.mems[step_id]

    input_dim = 2
    batch_size = 3
    sent_len = 3

    def setUp(self):
        self.setup_program()

        self.data_field = {"x", "emb", "w1", "w2"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpSubBlockTest.PySimpleRNN5(self.input_shape,
                                                           self.output_shape)

        with fluid.program_guard(self.main_program, self.startup_program):
            rnn_out = self.create_rnn_op()
            self.output = layers.mean(rnn_out)

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False)
        x.stop_gradient = False

        emb = layers.data(
            name='emb',
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            append_batch_size=False)
        emb.stop_gradient = False

        w1 = layers.data(
            shape=[self.input_dim, self.input_dim],
            dtype='float32',
            name='w1',
            append_batch_size=False)
        w1.stop_gradient = False
        w2 = layers.data(
            shape=[self.input_dim * 2, self.input_dim],
            dtype='float32',
            name='w2',
            append_batch_size=False)
        w2.stop_gradient = False

        rnn = layers.StaticRNN()

        def dot_attention(query, memory):
            attn = layers.matmul(query, memory, transpose_y=True)
            weight = layers.softmax(attn)
            weight_memory = layers.matmul(weight, memory)

            return weight_memory, weight

        y = layers.matmul(emb, w1)
        with rnn.step():
            pre_h = rnn.memory(
                shape=(self.sent_len, self.input_dim),
                batch_ref=x,
                init_value=0.0)
            step_in = rnn.step_input(x)
            concat_in = layers.concat([step_in, pre_h], 1)
            new_h = layers.matmul(concat_in, w2)
            new_h = layers.unsqueeze(new_h, [1])
            new_h, _ = dot_attention(new_h, y)
            new_h = layers.squeeze(new_h, [1])

            rnn.update_memory(pre_h, new_h)
            rnn.step_output(new_h)

        return rnn()


Y
Yan Chunwei 已提交
605 606
if __name__ == '__main__':
    unittest.main()